Onondaga County Health Department Division of Environmental Health 421 Montgomery Street Syracuse, New York 13202

Incinerator Monitoring Program

2012 Ash Characterization Summary

June 1, 2013

Submitted To: Cynthia B. Morrow, M.D., M.P.H. Commissioner of Health

Submitted By: Kevin L. Zimmerman Director, Division of Environmental Health

Contents:

- I. Table of Abbreviations.
- II. Executive Summary.
- III. Introduction.
- IV. Element Specific Summary.
- V. Summary and Conclusions.
- VI. Wet Weight Ash Metal Analysis Data: Fall 1995 to Fall 2011.
- VI.A. Wet Weight Mean Values Ash Data Graph: As, Cd, Cr, Ni, V
- VI.B. Wet Weight Mean Values Ash Data Graph: Be, Hg, Se
- VI.C. Wet Weight Mean Values Ash Data Graph: Pb, Zn
- VII. Dry Weight Ash Metal Analysis Data: Fall 1998 to Fall 2011.
- VII.A. Dry Weight Mean Values Ash Data Graph: As, Cd. Cr, Ni, V
- VII.B. Dry Weight Mean Values Ash Data Graph: Be, Hg, Se
- VII.C. Dry Weight Mean Values Ashe Data Graph: Pb, Zn
- VIII. NYSDEC Ash Residue Characterization Project, 1992, Summary of Ash Results.

I. Table of Abbreviations

The following abbreviations may be used throughout this report:

As	Arsenic.
Be	Beryllium.
Cd	Cadmium.
CES	Certified Environmental Services.
Cr	Chromium.
CV	Coefficient of Variation.
ELAP	Environmental Laboratory Approval Program.
ELS	Environmental Laboratory Services.
Hg	Mercury.
LD	Limit of Detection.
Ni	Nickel.
NYSDEC	New York State Department of Environmental Conservation.
OCHD	Onondaga County Health Department.
Pb	Lead.
ppm	parts per million.
ug/g	micrograms per gram (= ppm).
SD	Standard Deviation.
Se	Selenium.
V	Vanadium.
WTE	Waste To Energy Facility.
Zn	Zinc.
~	approximately.
<	Less than.
>	Greater than.
NA	Not applicable.

Note: Values <LD were not included in average, SD and CV calculations.

II. Executive Summary

Sample analyses for the 2012 ash characterization study were conducted by Life Science's Laboratories, Inc. (formerly O'Brien and Gere Laboratories, Inc.). As has been the format since the Fall 1998 reporting period, the year 2012 results have been reported on both a wet weight and dry weight basis. Results through the Spring 1998 reporting period were reported exclusively on a wet weight basis. Each of these reported values provides important information regarding ash metal data. Wet weight values will be used for historical comparison relative to the conditions of the ash as it leaves the WTE Facility. Dry weight values will allow for better comparison with future metal concentrations, removing the variability of ash moisture content. Dry weight values will tend to be higher than wet weight since the weight of the "inert" water is removed in the concentration calculations.

This report uses the individual metal "mean plus three standard deviations" as a benchmark for consistent results. Calculations include all wet weight data through the Fall 2012 sampling period. This standard is supported by the NYSDEC data in which at least 95% of the individual metal results are within the "mean plus three standard deviations" for the respective metals. It is evident by looking at the data from this report and the NYSDEC data that there will be occasional results outside of this benchmark. Occasional outlying sample results are not considered to be of significance. Such results may be due to the fact that, while every effort is used to create a homogeneous combined ash sample, it is not feasible to obtain such a sample because of the presence of incombustible "chunks" in the bottom ash.

Ash collection and compositing continues to be the responsibility of Covanta Energies Systems of Onondaga under NYSDEC protocols. The Health Department and Covanta Energies utilize split samples to ensure the most accurate results.

III. Introduction

The purpose of this study is to provide part of an ongoing evaluation of ash generated at the Onondaga County Resource Recovery Agency Waste-To-Energy facility. The results summarized in this report reflect analysis of combined fly and bottom ash samples from Fall 1995 through Fall 2012. The ash samples were analyzed for total metal concentration for arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, selenium, vanadium and zinc.

In 2011, due to improvements in laboratory equipment, the detection limits for beryllium, cadmium, and selenium have been lowered. Therefore there are detectable levels of these metals in many of the ash samples starting in 2011 as compared to previous years.

As part of our evaluation of the metals content of the ash samples, the average value concentrations from each semiannual sampling period are compared to the analogous values from the combined ash samples from the NYSDEC "Ash Residue Characterization Project" (1992). Average and standard deviation calculations do not include those results less than a limit of detection.

The results in this report represent total metal content in the combined fly and bottom ash from the WTE Facility. The standard test for determining the leachability of constituents of combined ash is the TCLP protocol established by the USEPA and accepted by the NYSDEC. Total metal content is not necessarily indicative of the leachability of contaminants from the ash.

IV. Element Specific Summary

Arsenic

Ash sample values in the 2012 study varied from 22.0 ppm wet weight (43.0 ppm dry wt) to a high value of 93.0 ppm wet weight (120.0 ppm dry wt). There were no arsenic results above the mean + 3SD level of 106 ppm wet weight.

The distribution and average for arsenic during the 2012 sampling period is consistent with the NYSDEC mean arsenic value of 19.1 ppm.

Beryllium

Ash sample values in the 2012 study varied from 0.34 ppm wet weight (0.46 ppm dry wt) to a high value of 1.0 ppm wet weight (1.4 ppm dry wt). One ash sample had a beryllium value above the mean + 3SD level of 0.87 ppm wet weight.

Beryllium was not evaluated in the DEC study.

Cadmium

Ash sample values in the 2012 study varied from 27.0 ppm wet weight (32.0 ppm dry wt) to a high value of 64.0 ppm wet weight (78.0 ppm dry wt). There were no cadmium results above the mean + 3SD level of 84.7 ppm wet weight.

The distribution and average for cadmium during the 2012 sampling period is consistent with the NYSDEC mean cadmium value of 33.6 ppm.

Chromium

Ash sample values in the 2012 study varied from 43.0 ppm wet weight (57.0 ppm dry wt) to a high value of 180.0 ppm wet weight (230.0 ppm dry wt). One ash sample had a chromium value above the mean + 3SD level of 152.7 ppm wet weight.

The distribution and average for chromium during the 2012 sampling period is very consistent with the NYSDEC mean chromium value of 259 ppm. The DEC average value of 259 ppm is skewed by a single outlying sample result.

Lead

Ash sample values in the 2012 study varied from 400 ppm wet weight (530 ppm dry wt) to a high value of 2,000 ppm wet weight (2,400 ppm dry wt). There were no lead results above the mean + 3SD level of 2,195 ppm wet weight.

The distribution and average for lead during the 2012 sampling period is consistent with the NYSDEC mean lead value of 1,558 ppm.

Mercury

Ash sample values in the 2012 study varied from 1.4 ppm wet weight (1.8 ppm dry wt) to a high value of 6.4 ppm wet weight (8.7 ppm dry wt). There were no mercury results above the mean + 3SD level of 7.3 ppm wet weight.

The distribution and average for mercury during the 2012 sampling period is very consistent with the NYSDEC mean mercury value of 10.9 ppm.

Nickel

Ash sample values in the 2012 study varied from 23.0 ppm wet weight (31.0 ppm dry wt) to a high value of 95.0 ppm wet weight (120.0 ppm dry wt). There were no nickel results above the mean + 3SD level of 110 ppm wet weight.

The distribution and average for nickel during the 2012 sampling period is significantly lower than the NYSDEC mean nickel value of 658 ppm.

Selenium

Ash sample values in the 2012 study varied from 0.5 ppm wet weight (0.62 ppm dry wt) to a high value of 2.7 ppm wet weight (3.6 ppm dry wt). There were no selenium results above the mean + 3SD level of 2.73 ppm wet weight.

The distribution and average for selenium during the 2012 sampling period is very consistent with the NYSDEC mean selenium value of 2.66 ppm.

Vanadium

Ash sample values in the 2012 study varied from 23.0 ppm wet weight (31.0 ppm dry wt) to a high value of 45.0 ppm wet weight (55.0 ppm dry wt). There were no vanadium results above the mean + 3SD level of 45.1 ppm wet weight.

Vanadium was not evaluated in the DEC study.

Zinc

Ash sample values in the 2012 study varied from 2,800 ppm wet weight (3,700 ppm dry wt) to a high value of 17,000 ppm wet weight (21,000 ppm dry wt). One ash sample had a zinc value above the mean + 3SD level of 14,174 ppm wet weight.

The distribution and average for zinc during the 2012 sampling period is consistent with the NYSDEC mean zinc value of 3,666 ppm.

V. Summary and Conclusions

The data contained in this report indicates consistent levels for all metals in the combined ash residue throughout the first seventeen years of operation. The samples from the Fall 1995 to Fall 2012 sampling periods are also consistent with those of the NYSDEC "Ash Residue Characterization Project".

The Health Department recognizes that there are inherent difficulties in using the NYSDEC study for comparison. The DEC study uses several different ash producing sources for their data. Also, the data is from a very specific time period. It does not take into account changes in the municipal solid waste stream due to time of year, increased recycling efforts, etc. However, results from the Health Department's study have shown that these variables have little significant effect on the total metal concentration in the ash. This is apparent when looking at the individual results and the sampling period averages over time. Well over 95% of the individual results from the ash characterization studies to date are within the "mean plus three standard deviation" criteria. Additionally, average metal values for each of the sampling periods show little relative change throughout the time frame of this report.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
11/15 - 16/95	951158	18.7	<.1	42.3	49.2	1189	5.87	44.8	2.09	10.02	3771
11/16 - 17/95	951159	18.7	0.13	36.7	42.2	866	4.26	50.3	1.69	10.02	3200
11/17/95	951160	16.8	0.15	37.7	41.1	1095	3.27	43.9	1.88	9.72	3593
11/17/95	951161	14.1	<.1	45.0	51.0	1164	5.19	38.3	1.85	9.7 <u>2</u> 9.74	<u> </u>
<u> 11/17 - 18/95</u>	951162	12.5	<.1	30.7	58.7	1067	3.94	42.5	1.83	<u>9.74</u> 10.06	8225
11/18/95	951163	11.9	0.12	54.3	41.2	1174	3.61	54.3	2.16	9.74	
11/18/95	951164	7.8	<.1	39.4	48.1	1080	4.97	<u> </u>	2.10	<u>9.74</u> 9.42	3120
11/18 - 19/95	951165	18.8	<.1	44.1	38.8	1236	5.34	73.6	1.76		3709
11/19/95	951166	19.3	<.1	42.7	51.1	1307	4.38	65.2	2.04	8.52 9.96	4070
11/19/95	951167	14.6	0.20	29.1	39.7	1036	3.40	63.0	1.55	10.60	<u>4577</u> 4517
									1,00	10.00	_ 4017
		15.3	0.15	40.2	46.1	1121	4.42	52.7	1.90	9.88	4277
STANDARD DEVIA		3.6	0.03	6.9	6.2	116	0.84	10.8	0.19	0.62	1393
JOLI FICIENT OF	VARIATION	23.7%	20.5%	17.3%	13.4%	10.4%	19.1%	20.4%	10.1%	6.3%	32.6%

.

-

Analyses performed by OCHD.

,

Ì

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Bervillum	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn
03/08 - 19/1996	960129	22.0	0.150	33.9	32.7	897	4.83	24.7	2.25	8.21	
03/08 - 19/1996	960130	13.6	0.160	41.3	33.3	894	7.82	27.7	2.73	8.84	2031
03/08 - 19/1996	960131	10.9	0.220	34.9	30.0	1127	6.70	37.7	1.97	9.87	2038
03/08 - 19/1996	960132	10.0	<.100	26.6	25.2	543	4.73	16.2	1.76	8.63	<u>2191</u> 1821
03/08 - 19/1996	960133	11.8	0.320	20.1	52.0	478	5.13	35.5	1.76	9.70	
03/08 - 19/1996	960134	5.6	<.100	29.8	27.0	1022	5.23	25.6	1.97	7.02	<u>1101</u> 2135
03/08 - 19/1996	960135	10.5	<.100	31.0	31.6	910	5.04	57.4	2.51	7.54	
03/08 - 19/1996	960136	13.3	<.100	22.4	29.1	622	5.20	32.5	1.94		2010
03/08 - 19/1996	960137	14.0	0.210	21.0	26.2	616	4,44	18.4	2.33	<u>6.81</u> 15.6	1448
03/08 - 19/1996	960138	19.6	<.100	24.0	24,5	1062	4.69	22.8	2.35	8.09	<u>1230</u> 1724
									<u> </u>	0.09	1724
AVERAGE STANDARD DEV		13.1	0.21	28.5	31.1	817	5.38	29.8	2.17	9.04	1773
COEFFICIENT OF		4.5	0.11	6.6	7.5	221	1.00	11.3	0.32	2.40	368
		34.3%	53.9%	23.0%	24.2%	27.0%	18.6%	37.9%	14.6%	26.6%	20.8%

Analyses performed by OCHD.

09/16/1996 960668 25.9 <.100												
09/16/1996 960668 25.9 <.100 49.7 43.1 1604 13.8 39.2 2.18 14.5 44 09/17/1996 960669 29.9 <.100	09/16/1996	960667	33.1	<.100	46.3	50.8	2028	3.16	59.0	2 45	12.1	4000
09/17/1996 960669 29.9 <.100 39.0 46.3 1590 8.38 29.5 2.64 16.3 36 09/17/1996 960670 32.3 <.100	09/16/1996	960668	25.9	<.100	49.7							4802
09/17/1996 960670 32.3 <.100 43.1 45.6 1582 4.10 40.9 2.63 17.9 22 09/18/1996 960671 30.5 <.100	09/17/1996	960669	29.9	<.100	1		1			1	·····	4507
09/18/1996 960671 30.5 <.100 37.7 47.3 940 4.98 59.1 2.31 13.1 45.9 24.99 59.1 2.31 13.1 45.9 24.99 59.1 2.31 13.1 45.9 24.99 59.1 2.31 13.1 45.9 29.9 5.18 373.7 2.27 12.9 44.99 49.99 5.18 373.7 2.27 12.9 44.99 49.99 5.18 373.7 2.27 12.9 44.99 44.99 44.99 59.1 2.31 13.1 45.9 38.9 5.18 373.7 2.27 12.9 44.9 44.99 44.99 59.1 2.31 13.1 45.9 38.9 38.1 37.7 2.27 12.9 44.9 <	09/17/1996	960670		· · · · · · · · · · · · · · · · · · ·					1	1	1	3883
09/18/1996 960672 25.4 <.100 45.1 341.9 899 5.18 373.7 2.27 12.9 44 09/19/1996 960673 30.4 <.100	09/18/1996	960671					1					2290
09/19/1996 960673 30.4 <.100 37.1 45.3 1275 3.86 125.5 2.84 15.9 38 09/19/1996 960674 35.5 <.100	09/18/1996	960672						1 ·····	·]	1		4552
09/19/1996 960674 35.5 <.100 07.1 45.3 1275 3.86 125.5 2.84 15.9 38 09/19/1996 960674 35.5 <.100	09/19/1996	960673		1		-					12.9	4481
09/20/1996 960675 31.0 <100 25.2 55.0 1811 8.13 47.3 2.53 15.7 81 09/20/1996 960675 31.0 <100	09/19/1996		· · · · · · · · · · · · · · · · · · ·		1						15.9	3803
09/20/1996 960676 20.0 <.100 49.2 66.9 731 4.41 55.4 1.90 15.7 47 09/21/1996 960677 25.7 <.100	09/20/1996		1	1			<u> </u>			1	15.7	8196
09/21/1996 960677 25.7 <.100 49.2 66.9 731 4.41 55.4 1.90 15.7 47 09/21/1996 960677 25.7 <.100								· · · · · · · · · · · · · · · · · · ·		3.05	17.7	6757
09/21/1996 960678 30.5 <.100 28.2 44.4 751 6.38 69.8 1.35 10.6 29 09/21/1996 960678 30.5 <.100									55.4	1.90	15.7	4732
09/22/1996 960679 37.2 <.100 38.2 87.0 1320 5.50 54.2 2.43 22.3 11' 09/22/1996 960680 30.8 <.100								6.38	69.8	1.35	10.6	2904
09/22/1996 960680 30.8 <.100 33.0 57.9 697 4.33 36.7 2.00 11.9 36 AVERAGE 29.9 N/A 20.2 74.0 1320 5.50 54.2 2.43 22.3 111							1110	5.90	40.9	2.02	11.8	3278
AVERAGE 29.9 N/A 20.2 74.0 697 4.33 36.7 2.00 11.9 36							1320	5.50	54.2	2.43	22.3	11168
AVERAGE 29.9 N/A 20.2 Trade Lucer	00/22/1000	900000	30.8	<u><.100</u>	33.0	57.9	697	4,33	36.7	2.00	11.9	3666
			20.0	N/A	20.2	740						
STANDARD DEVIATION 43 N/A 64 760 1200 6.07 77.5 2.33 15.0 49	TANDARD DEV	ATION				1	1256	6.07	77.5	2.33	15.0	4930
COEFFICIENT OF VARIATION 14.4% N/A 16.2% 100.5% 22.52 85.1 0.41 3.0 22	OEFFICIENT OF	VARIATION				the second s					3.0	2256
					10.270	100.5%	32.5%	43.1%	109.8%	17.8%	19.8%	45.8%

.

Analyses performed by OCHD.

SAMPLE		Γ	T	<u> </u>	1			1	1	1	
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	l v	7-
DATE	#	Arsenic			Chromium	Lead	Mercury	Nicket		v Vanadium	Zn Zinc
03/10/97	970134	22.9	0.110	49.6	35.7	660	8.24	30.7	1.85	17.7	4322
03/10/97	970135	17.5	<.100	29.0	30.2	622	5.66	30.3	1.60	14.8	4220
03/11/97	970136	14.2	0.600	24.0	41.1	828	6.55	38.5	1.18	14.9	4308
03/11/97	970137	12.9	0.170	30.3	36.3	717	6.28	35.4	1.28	11.9	2450
03/12/97	970138	15.0	0.160	33.9	41.4	841	9.45	30.3	1.50	12.4	3658
03/12/97	970139	12,2	<.100	48.2	74.4	1009	5.15	60.9	1.23	96.4	<u> </u>
03/13/97	970140	16.3	<.100	29.0	44.2	502	5.81	37.1	1.60	13.3	3563
03/13/97	970141	<u>14.1</u>	<.100	28.5	42.4	682	7.34	31.1	1.04	10.0	2906
03/14/97	970142	14.2	0.110	29.8	46.9	668	4.16	36.3	1.55	12.2	3377
03/14/97	970143	12.5	<.100	28.1	59.8	530	8.19	58.4	0.88	1 <u>2,2</u> 16.4	
03/15/97	<u>9701</u> 44	17,7	<.100	32.9	60.7	684	7.73	60.7	1.37	15.0	<u>3648</u> 3832
03/15/97	970145	16.5	0.140	26.0	56.0	629	5.4	56.0	0.75	16.0	7786
03/16/97	970146	14.9	<.100	20.4	41.3	<u>495</u>	7.14	49.5	1.70	9.8	5291
03/16/97	970147	11.5	<.100	35.8	64.5	1047	6.54	64.5	0.67	<u>9.0</u> 14.6	
							0.04	04.0	0.07	14.0	5576
AVERAGE STANDARD DEVI	ATION	15.2	0.22	31.8	48.2	708	6.69	44.3	1.30	19,7	4063
COEFFICIENT OF		2.8	0.16	7.9	12.3	164	1.37	12.8	0.35	21.4	1398
	VARIATION	18.7%	72.4%	24.9%	25.5%	23.1%	20.5%	28.9%	26.9%	108.8%	34.4%
nalyses performed by	OCHD.										
09/15/97	970698	43.3	<.100	34.1	54.9	3932	5.84	42.2	1.20	21.2	4000
09/15/97	970699	21.7	<.100	33.4	45.5	923	4.40	26.7	0.64		4982
09/16/97	970700	32.5	0.290	30.2	53.2	1012	3.61	32.5		12.5	3820
09/16/97	970701	22.9	<.100	26.2	37.3	1012	5.18		0.92	20.7	4634
09/17/97	970702	40.5	<.100	31.8	44.1	968	5.72	19.4	0.67	16.3	3834
09/17/97	970703	22.1	<.100	33.4	40.4	1051	4.91	28.1	0.86	17.8	4583
09/18/97	970704	22.2	<.100	27.1	<u>40.4</u> 69.5	1014		36.8	0.61	10.5	4584
09/18/97	970705	24.5	<.100	21.8	34.7		5.33	32.9	0.86	17.5	3617
09/19/97	970706	25.3	<.100	32.6	46.7	1084	12.5	14.7	0.82	11.8	3296
09/19/97	970707	22.2	0.140	30.4		1911	7.91	33.6	0.72	14.8	4041
			0.140	30.4	60.2	1481	6.75	28.7	0.60	13.0	4152
VERAGE		27.7	0.22	30.1	48.7	1440	6.21	10.0	0.00		
TANDARD DEVIA	ATION	7.7	0.09	3.7	10.2	880	2.38	<u>29.6</u> 7.6	0.79	15.6	4154
OEFFICIENT OF	VARIATION	27.8%	42.9%	12.4%	21.1%	61.1%	38.2%	25.8%	0.18	3.5	504
nalyses performed by	OCUD						- 412 /0	20.070	22.270	22.5%	12.1%

Analyses performed by OCHD.

1

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
02/23/98	980126	14.8	<0.50	26.6	41.3	700	11.6	95.0	<0.25	25.0	3100
02/23/98	980127	16.6	<0.50	30.1	36.9	1760	6.50	75.8	<0.25	15.6	9140
02/24/98	980128	12.6	<0.50	24.2	28.4	740	7.70	23.8	<0.25	13.4	2820
02/24/98	980129	9.60	<0.50	23.0	35.8	610	9.30	23.8	<0.25	16.8	2610
02/25/98	980130	7.60	<0.50	23.8	44.2	510	5.30	46.7	<0.25	17.2	2520
02/25/98	980131	6.70	<0.50	21.6	32.5	540	9.70	26.2	<0.25	13.4	3050
02/26/98	980132	12.4	<0.50	24.8	68.2	730	10.0	42.7	<0.25	22.4	3350
02/26/98	980133	6.60	<0.50	19.7	44.2	580	5.44	47.0	<0.25	12.1	2210
02/27/98	980134	7.60	<0.50	27.4	39.4	460	2.93	46.4	<0.25	13.8	2220
02/27/98	980135	7.40	<0.50	21.4	41.2	7200	10.5	35.8	<0.25	12.6	2310
02/27/98**	980135-RPT					761					
		10.2	N/A	24.3	41.2	1383	7.90	46.3	N/A	16.2	3333
TANDARD DEV		3.5	N/A	3.0	10.2	1971	2.64	21.9	N/A	4.1	1971
OEFFICIENT O	r VARIATION	34%	N/A	12%	25%	143%	33%	47%	N/A	25%	59%

Analyses performed by CES.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
10/26/98	980808	29.8	0.80	26.6	47.7	852	6.95	49.9	<0.99		
10/26/98	980809	23.6	0.52	26.4	47.1	776	6.40			33.0	3558
10/27/98	980810	36.0	0.74	28.0	138.6	1417	6.90	41.6	<1.00	31.6	3926
10/27/98	980811	25.3	0.66	31.9	49.3			199.4	<2.47	36.2	3565
10/28/98	980812	32.9	0.65	30.6		14800	6.88	40.2	<0.98	26.3	4024
10/28/98	980813	22.8	0.00		42.7	1525	8.01	32.7	<0.98	30.7	3311
10/29/98	980814			29.1	52.4	1184	7.18	61.3	<0.96	30.1	3604
10/29/98	980815	37.8	0.64	33.2	62.5	996	9.20	54.0	<1.00	32.0	1429
10/30/98		31.1	0.69	30.4	44.9	2633	14.0	17.0	<0.98	26.3	3788
10/30/98	980816	29.8	0.52	22.8	37.1	740	7.32	41.1	<2.51	41.6	3110
10/30/98	980817	30.6	0.51	22.1	34.6	1100	6.14	58.0	<1.00	27.4	3892
VERAGE		20.0	0.00	00.1							0002
TANDARD DEVI	ATION	<u> </u>	0.62	28.1	55.7	2602	7.90	59.5	N/A	31.5	3421
OEFFICIENT OF	VARIATION	16%	0.11 18%	3.5	28.6	4100	2.20	48.2	N/A	4.5	716
			1070	12.70	51%	158%	28%	81%	N/A	14%	21%

SAMPLE COLLECTION	LAB	As	Be	Cd	Cr	РЬ	Hg	Ni	Se	v	Zn
DATE	##	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel		Vanadium	Zinc
04-19-99	990215	30.4	<0.50	29.4	50.1	760	4.56	73.0	1.28	30.9	2864
04-19-99	990216	22.7	<0.50	32.8	114	1860	3.83	33.9	1.16	36.5	9523
04-20-99	990217	26.0	<0.50	29.3	47.0	728	3.83	62.1	1.28	32.3	2730
04-20-99	990218	20.8	<0.49	34.2	49.0	652	5.60	31.8	1.36	20.0	2920
04-21-99	990219	28.6	<0.50	36.2	51.4	885	5.77	1509	1.50	27.7	3863
04-21-99	990220	29.6	<0.49	44.2	227	828	5.24	44.0	1.75	32.3	3808
04-22-99	990221	24.1	<0.49	35.3	44.5	1029	4.13	39.0	0.89	31.5	2916
04-22-99	990222	26.8	<0.49	38.9	58.0	1123	5.04	30.7	1.15	23.6	3362
04-23-99	990223	30.2	<0.50	40.2	51.6	848	4.80	29.3	1.68	30.0	3360
04-23-99	990224	23.9	<0.49	33.6	53.1	939	5.54	43.0	1.31	23.4	3303
							0.01		1.01	23.4	3303
AVERAGE STANDARD DEV		26.3	N/A	35.4	74.6	965	4.83	190	1.34	28.8	3865
COEFFICIENT O		3.2	N/A	4.4	54.4	327	0.69	440	0.24	4.8	1922
OULT IOILITI O	VANATION	12.2%	N/A	12.6%	72.9%	33.8%	14.3%	232.1%	18.2%	16.7%	49.7%
Analyses performed by 11-08-99											
	990747	29.6	<2.53	29.9	60.1	789	5.73	241	<2.53	37.0	3176
11-08-99	990748	30.9	<2.56	30.2	48.6	802	5.47	268	3.48	30.6	3302
11-09-99	990749	33.1	<2.43	31.5	53.4	1026	4.70	64.7	<2.43	48.6	3139
11-09-99	990750	24.0	<2.45	32.1	60.1	698	5.44	48.9	<2.45	34.6	2923
11-10-99	990751	25.2	<2.48	30.5	64.2	848	4.51	60.0	<2.48	40.4	3308
11-10-99	990752	25.8	<2.48	36.2	51.8	1425	5.30	43.7	<2.48	27.0	3383
11-11-99	<u>99</u> 0753	28.2	<2.42	31.2	45.7	928	5.12	38.1	<2.42	48.0	3042
	990754	24.4	<2.41	<u>3</u> 3.3	49.3	876	7.45	43.1	<2.41	30.1	
<u> 11-12-99 </u>	990755	23.5	<2.45	27.5	50.0	700	6.22	39.5	<2.45		3416
11-12-99	990756	25.4	<2.43	38.8	42.4	920	6.85	171		28.9	2743
VERAGE							0.00	(1)	<2.43	24.8	3815
TANDARD DEVI		27.0	N/A	32.1	52.6	901	5.68	102	3.48	35.0	2005
COEFFICIENT OF	VAPIATION	3.1	N/A	3.1	6.6	200	0.88	85	0.00	8.0	3225
		11.5%	N/A	9.7%	12.5%	22.2%	15.4%	83.7%	0.0%	22.8%	<u>281</u> 8.7%
nalvses performed by	ELC.								0.070	22.070	0.1%

SAMPLE COLLECTION DATE	LAB #	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
05/08/00		Arsenic	Beryllium		Chromium		Mercury	Nickel		Vanadium	Zinc
	2000-0243	38.8	<0.49	35.5	58.8	1053.0	7.0	101.4	1.2	32.9	3120.0
05/08/00	2000-0244	28.6	<0.50	34.9	63.8	708.1	5.4	58.2	1.2	25.1	3385.2
05/09/00	2000-0245	73.4	<0.50	38.6	65.9	1112.0	8.6	247.2	2.6	24.9	5576.0
05/09/00	2000-0246	25.2	<0.50	31.4	92.8	761.3	6.2	117.8	0.9	23.1	3681.6
05/10/00	2000-0247	30.7	<0.25	33.5	55.9	693.8	6.1	39.8	0.9	23.4	5844.3
05/10/00	2000-0248	26.3	<0.50	34:5	61.4	792.0	6.6	47.2	1.1	22.8	2944.0
05/11/00	2000-0249	53.8	<0.50	39.5	106.1	721.7	10.4	290.0	1.5	31.9	3078.0
05/11/00	2000-0250	33.9	<0.50	32.4	51.6	850.2	5.7	29.6	<0.50	30.9	3954.6
05/12/00	2000-0251	25.5	<0.49	28.7	55.5	673.9	7.6	282.0	1.3	26.4	3649.8
05/12/00	2000-0252	35.1	<0.50	38.7	67.4	757.5	6.8	42.3	1.4	26.0	3157.5
A L she has a second										20.0	0101.0
AVERAGE		37.1	NA	34.8	67.9	812	7.02	126	1.23	26.7	3839
STANDARD DEV COEFFICIENT O		14.6	NA	3.3	16.7	144	1.42	101	0.62	3.6	984
OULT HOLENT U	F VARIATION	39.2%	NA	9.5%	24.6%	17.7%	20.2%	80.1%	50.5%	13.4%	25.6%
Analyses performed b	y ELS. 2000-0785	07.0	-0.54				-				
12/11/00		27.8	<0.51	28.1	42.2	1014.0	9.4	32.8	1.1	44.5	3127.8
	2000-0786	15.8	<0.49	18.7	39.1	669.1	5.4	29.3	1.0	22.5	1903.5
12/11/00	2000-0787	23.1	<0.49	26.3	49.0	732.6	3.8	44.4	1.3	36.6	2656.6
12/12/00	2000-0788	21.1	<0.50	31.2	46.1	628.5	4.9	38.0	1.2	26.4	2956.5
12/12/00	2000-0789	14.3	<0.50	27.2	69.5	810.0	4.4	314.3	1.4	20.2	3630.0
12/13/00	2000-0790	14.9	<0.50	26.6	50.3	858.4	5.6	47.8	1.3	28.4	2634.4
12/13/00	2000-0791	14.5	<0.50	26.7	51.5	694.1	6.1	28.2	1.2	17.9	2190.4
12/14/00	2000-0792	21.1	<0.50	24.0	53.0	858.4	5.5	47.5	1.3		
12/14/00	2000-0793	19.1	<0.51	27.5	41.4	976.8	5.0	54.4		26.1	2205.2
12/15/00	2000-0794	21.0	<0.51	21.1	36.1	7528.0			1.6	22.4	3414.4
					00.1	1020.0	4.3	26.1	1.3	20.7	2160.0
AVERAGE		19.3	NA	25.7	47.8	1477	5.44	66.3	1.00	00.0	0.055
STANDARD DEVI	ATION	4.2	NA	3.4	9.0	2021	1.47	83.2	<u>1.26</u> 0.16	26.6	2688
COEFFICIENT OF	VARIATION	21.7%	NA	13.2%	18.8%	136.8%	27.0%	125.5%	12.6%	<u>7.8</u> 29.4%	553
Dalvses performed by									14.0/0	23,470	20.6%

SAMPLE							1				
COLLECTION DATE	LAB #	As	Be	Cd	Cr	Pb	Hg	Ni	Se	V	Zn
03/19/01		Arsenic	Beryllium		Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
	01-0167	8.2	0.24	20.6	40.7	627,8	2.3	36.6	0.6	18.6	1941.8
03/19/01	01-0168	6.0	0.35	14.5	48.7	777.6	2.1	21.1	0.7	16.6	1764.0
03/20/01	01-0169	9.2	0.21	20.2	36.6	609.8	3.8	23.5	1.2	15.2	1672.5
03/20/01	01-0170	11.2	0.22	17.3	38.6	427.4	2.0	34.6	1.1	15.1	1686.3
03/21/01	01-0171	9.0	<0.10	17.7	25.9	352.7	3.2	24.8	1.0	11.8	1601.6
03/21/01	01-0172	7.7	0.25	19.6	33.6	419.0	4.1	26.8	1.2	19.7	4737.7
03/22/01	01-0173	10.9	0.24	29.0	61.5	522.2	3.3	67.2	0.8	22.0	1981.0
03/22/01	01-0174	6.7	0.30	18.0	36.5	413.9	3.8	51.5	1.0	21.8	1701.0
03/23/01	01-0175	8.6	<0.10	13.7	28.9	674.3	2.9	36.0	2.6	21.4	2010.0
03/23/01	01-0176	8.4	0.20	24.3	28.9	549.8	3.3	44.7	1.0	14.6	1990.6
									1	14.0	1990.0
	4471011	8.6	0.201	19.5	38.0	537.4	3.1	36.7	1.1	17.7	2108.7
STANDARD DEV		1.5	0.1	4.3	10.0	128.7	0.7	13.7	0.5	3.4	888.3
	P VARIATION	18.0%	19.1%	22.0%	26.4%	24.0%	23.2%	37.4%	47.2%	19.0%	42,1%
Analyses performed b	by ELS.										
12/10/01	01-0777	35.3	<0.5005	44.9	33.0	2895.2	5.9	40.0	2.9	29.0	3757.6
12/10/01	01-0778	18.5	<0.4928	25.9	30.5	517.4	6.0	21.3	1.5		
12/11/01	01-0779	20.7	<0.4968	42.5	45.6	864.0	6.7	35.6	· · · · · · · · · · · · · · · · · · ·	24.8	2610.3
12/11/01	01-0780	21.8	<1.28	33.9	48.0	755.2	4.9	····	2.0	22.3	3340.8
12/12/01	01-0781	19.8	<0.5106	27.6	<u>40.0</u> 39.9	·	·······	38.6	2.3	22.8	4032.0
12/12/01	01-0782	24.9	<0.5022	37.9		591.3	4.1	48.0	2.7	30.9	2812.0
12/13/01	01-0783	25.0	<0.504		33.9	781.7	6.2	35.2	3.2	23.3	3677.4
12/13/01	01-0784			40.5	30.7	652.0	5.3	32.6	2.2	26.8	3112.0
12/14/01	01-0785	24.1	<0.5175	35.0	33.7	1305.0	2.1	40.0	2.2		2925.0
12/14/01		33.8	<0.5041	73.8	35.4	1178.6	1.9	27.3	2.9	. 28.7	3968.9
12/14/01	01-0786	13.7	<0.4964	24.1	43.4	1080.4	1.3	32.3	1.6	39.3	2233.8
VERAGE		23.8		20 0	077.4	1000 (
TANDARD DEV	IATION	23.8 6.3	NA	38.6	37.4	1062.1	4.4	35.1	2.4	26.9	3247.0
	IATION F VARIATION	23.8 6.3 26.5%	NA NA NA	38.6 13.5 35.0%	37.4 6.0 16.1%	1062.1 658.2 62.0%	4.4 1.9 42.2%	35.1 7.0 19.9%	2.4 0.6 23.5%	26.9 5.2 19.2%	

SAMPLE		1	T	1	1		T	r		1	
COLLECTION	LAB	As	Be	Cd	Cr	Pb	1 11-			İ	_
DATE	#	Arsenic	1		Chromium		Hg Mercury	Ni Nickel	Selenium	V	Zn
05/06/02	02-0241	23.9	<0.4836	29.3	48.7	710.6	4.5	71.3	1.4	Vanadium	
05/06/02	02-0242	19.7	<0.4928	22.3	44.3		1		1	30.3	2581.8
05/07/02	02-0243	38.8	<0.5002			563.6	2.2	61.2	1.2	24.1	2795.1
05/07/02	02-0244	22.8	<0.5124	42.6	45.6	768.3	4.5	38.8	1.6	24.0	3526.0
05/08/02	02-0245	22.2		41.7	95.8	646.0	6.8	55.7	1.2	27.6	3368.4
05/08/02	02-0246		<0.5025	43.0	59.3	900.0	5.8	52.7	1.5	28.5	3825.0
05/09/02		18.6	<0.5135	24.1	52.8	659.7	1.9	60.8	0.6	24.2	2449.0
	02-0247	29.2	<0.4977	26.9	55.9	770.3	3.4	29.8	0.9	23.9	2180.4
05/09/02	02-0248	18.6	<0.4898	18.7	36.7	593.3	2.3	28.1	0.9	18.5	2061.9
05/10/02	02-0249	34.1	<0.4940	32.2	41.9	693.1	5.7	26.8	1.8	23.8	2781.6
05/10/02	02-0250	43.6	<0.5092	45.5	55.6	731.1	5.2	29.9	1.9	24.5	3792.4
AVERAGE		07.0	-	0.0.0							
STANDARD DEV		<u>27.2</u> 8.5	NA NA	32.6	53.6	703.6	4.2	45.5	1.3	24.9	2936.2
COEFFICIENT O		31.1%	NA NA	9.3 28.6%	<u> 15.5</u> 29.0%	<u>92.3</u> 13.1%	1.6 38.5%	<u>15.8</u> 34.7%	0.4	3.1	616.5
								011770	30.7%	12.3%	21.0%
Analyses performed by 12/02/02	·····				······································		,				
	02-0767	33.5	<1.005	43.2	45.7	982.5	4.5	42.6	1.8	34.0	4035.0
12/02/02	02-0768	16.6	<1.0184	24.6	35.6	716.7	4.1	66.2	<1.0184	29.0	2295.2
12/03/02	02-0769	23.2	<u><1.01</u> 64	24.3	30.7	890.4	9.1	26.5	1.1	29.5	2041.2
12/03/02	02-0770	16.8	<0.9860	26.6	32.6	590.2	6.0	22.9	<0.986	55.8	2638.4
12/04/02	02-0771	26.0	<0.4964	29.5	42.1	1649.8	4.7	36,1	1.5	22.7	2460.1
12/04/02	02-0772	23.2	<0.4968	31.3	33.5	1255.8	13.7	38.4	1.5	21.3	
12/05/02	02-0773	23.7	<0.5112	43.8	35.8	1605.6	8.8	39.2	2.0		2187.3
12/05/02	02-0774	22.3	<0.5256	31.8	38.9	1357.8	7.2	42.1		23.5	3038.4
12/06/02	02-0775	23.5	<0.5166	28.7	41.2	1082.4	7.0		1.5	23.7	2438.2
12/06/02	02-0776	15.7	<0.4914	15.7	35.4	251.2		32.2	1.1	25.7	2214.0
				10.7	00.4	201.2	2.6	28.3	1.0	23.0	1154.4
VERAGE		22.4	NA	29.9	37.1	1038.2	6.8	37.4		00.0	0 / 1 0
TANDARD DEVI	ATION	5.0	NA	8.1	4.5	423.8	3.0	11.5	<u>1.1</u> 0.6	<u>28.8</u> 9.7	2450.2
OEFFICIENT OF	VARIATION	22.3%	NA	26.9%	12.0%	40.8%	45.0%	30.7%	56.0%	<u>9.7</u> 33.8%	699.2
									00.070	00.0%	28.5%

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
06/02/03	15503164	15.1	<0.504	15.1	100.8	5460.0	1.3	226.8	< 0.504	23.5	1428.0
06/02/03	15503165	22.8	<0.501	22.8	44.6	637.0	1.3	91.0	<0.501	26.4	13650.0
06/03/03	15503166	11.4	<0.502	14.1	20.2	1056.0	1.1	11.4	<0.502	10.6	1320.0
06/04/03	16103027	22.3	<0.501	25.4	30.8	700.7	2.5	100.1	<0.502	23.1	2926.0
06/04/03	16103028	16.2	<0.502	15.3	28.9	272.0	7.0	22.1	<0.502	11.9	1445.0
06/05/03	16103029	37.2	<0.502	33.4	47.1	661.2	3.9	35.7	<0.502	36.5	3876.0
06/05/03	16103030	28.1	< 0.503	24.8	48.2	522.6	5.2	20.1	<0.502	20.8	2345.0
06/06/03	16103031	30,4	< 0.504	30.4	43.2	600.0	3.4	40.0	<0.503	33.6	2800.0
06/06/03	16103032	34.2	<0.502	35.0	50.9	699.2	4.3	64.6	<0.504	21.3	5472.0
06/07/03	16103026	58.2	<0.500	31.2	53.3	680.6	3.7	76.3	<0.502	32.0	4674.0
AVERAGE		07.0			5. 1 S. 1	1.20	and set of	1231			
	ATION	27.6	NA	24.7	46.8	1128.9	3.4	68.8	NA	24.0	3993.6
STANDARD DEV		13.0	NA	7.4	20.7	1455.2	1.8	60.2	NA	8.1	3484.5
COEFFICIENT OF	- VARIATION	47.0%	NA	30.1%	44.2%	128.9%	52.9%	87.5%	NA	34.0%	87.3%

Analyses performed by Upstate Laboratories Inc.

06/14/04	E1540	32.1	<1.0152	26.2	44.8	829.1	3.0	39.8	0.8	27.1	3553.2
06/14/04	E1541	25.9	<0.9812	22.3	42.8	651.2	1.2	25.0	0.7	20,5	2586.8
06/15/04	1542	38.2	<1.0188	28.0	66.2	1273.5	2.5	55.2	1.1	43.3	3226.2
06/15/04	1543	43.4	<10.2	38.3	85.0	935.0	6.5	102.0	<5.015	<50.2	3400.0
06/16/04 E	2029	33.0	<1.0164	38.1	52.5	931.7	5.0	52.5	1.3	30.5	3642.1
06/16/05 E	2030	31.2	<1.014	37.4	45.2	1014.0	3.0	319.8	2.0	22.6	3978.0
06/17/05 E	2031	26.0	<1.0068	32.7	56.2	662.8	3.6	36.9	1.3	25.2	3523.8
06/23/04 E	2626	27.5	<0.9984	31.6	56.6	807.0	3.8	35.8	1.8	25.0	3244.8
06/25/04 E	2627	45.8	<0.975	73.5	63.8	1425.0	5.6	82.5	1.7	25.5	5850.0
06/27/04 E	2628	44.7	<0.9924	65.3	62.0	992.4	3.2	48.0	1.7	34.7	3721.5
VERAGE		34.8	NA	39.4	57.5	952.2	3.8	79.7	1.2	25.4	3672.6
TANDARD DEVIATIO		7.3	NA	15.9	12.0	233.1	1.5	83.0	0.6	10.6	806.8
OEFFICIENT OF VAR	IATION	21.1%	NA	40.5%	20.9%	24.5%	39.5%	104.1%	46.4%	41.5%	22.0%

Analyses performed by O' Brien	& Gere Laboratories, Inc

	THUR THON	10.0%	NA	12.3%	23.2%	43.7%	53.4%	51.8%	17.1%	25.0%	15.4%
DEFFICIENT OF	VARIATION	15.5%	and the second se	the second se	11.0	412.6	3.0	23.4	0.2	6.5	550.9
ANDARD DEVIA	TION	2.8	NA	4.2		943.4	5.6	45.2	1.44	25.8	3585.8
'ERAGE		18.3	NA	34.2	47,4	040.4					
		1 10.0	-0.9004	34.7	51.6	637.5	3.4	45.2	1.4	22.6	3470,1
12/30/04	F1520	18.6	< 0.9684				4.9	27.6	0.8	18.7	2926.8
12/30/04	F1519	14.6	<0.9756	35.0	33.3	626.0				28.7	3670.8
12/29/04	F1518	21.5	<1.0374	42.3	51.9	1436.4	4.5	46.3	1.3		
12/29/04	F1517	19.0	<0.9888	33.8	39.6	824.0	3.5	28.8	1.0	33.8	3213.6
12/28/04	F1516	17.9	<1.0024	35.8	48.0	615.8	4.2	70.2	1.0	17.2	3150.4
	F1515	14.9	<0.9698	29.8	74.6	1119.0	4.6	33.6	0.7	32.8	3058.6
12/28/04			<0.9672	28.2	47.6	660.9	7.3	104.8	1.5	24.2	4836.0
12/27/04	F1514	20.2		38.6	43.9	1052.4	14.0	38.6	0.9	36.8	4034.
12/27/04	F1513	23.7	<0.9647				5.4	27.9	1.1	21.1	3468.4
12/23/04	F1434	17.3	<0.9802	35.4	49.0	1885.0				22.1	4029.0
12/23/04	F1433	15.0	<1.027	28.4	34.8	576.7	4.3	29.2	0.7	00 4	1000

Analyses performed by O' Brien & Gere Laboratories, Inc

.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
05/16/05	0505100-001A	46,3	<0.9977	46.3	58.0	1542	3.6	39.0	1,4	47.2	5623
05/16/05	0505100-002A	45.0	<0.9648	39.4	59.5	1045	3.5	39.4	1.4	37.0	4904
05/17/05	0505100-003A	44.9	<0.9867	50.2	71.8	1704	3.9	82.5	1.5	29.6	5292
05/17/05	0505100-004A	61.5	<1.0104	63.2	69.9	2021	4.0	64.8	1.8	31.2	6399
05/18/05	0505131-001A	48.9	<0.9614	54.2	73.4	1311	4.1	81.3	1.6	34.1	5419
05/18/05	0505131-002A	37.9	<1.0104	52.2	60.6	1768	4.0	41.3	1.7	26.9	4968
05/19/05	0505131-003A	36.7	<0.9996	48.3	54.1	1166	4.1	40.8	1.2	29.2	4498
05/19/05	0505131-004A	47.7	<0.9708	55.0	57,4	1294	4.8	44.5	1.4	29.1	5663
05/20/05	0505131-005A	40.1	<0.9612	48.1	48.1	1282	0.6	48.9	0.9	37.6	4886
05/20/05	0505131-006A	42.6	<0.9636	61.8	112.4	1445	4.9	216.8	1.5	24.1	6103
							·				
AVERAGE		45.1	NA	51.9	66.5	1457.9	3.7	69.9	1.4	32.6	5376
STANDARD DEV		6.7	NA	6.8	17.1	285.6	1.1	51.5	0.2	6.3	559
COEFFICIENT O	F VARIATION	14.8%	NA	13.1%	25.7%	19.6%	30.2%	73.7%	16.6%	19.4%	10.4%

Analyses performed by Life Science Laboratories, Inc.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
12/12/05	0512118-001A	24.1	<0.9972	40.7	50.7	997	4.1	58.2	1.1	<99.72	6814
12/12/05	0512118-002A	18.3	<0.9932	28.3	45.8	1452	2.4	37.4	1.2	19.9	2903
12/13/05	0512118-003A	16.9	<1.0152	41.5	45.7	1184	3.3	195	0.7	31.3	3976
12/13/05	0512118-004A	20.9	<1.002	30.9	68.5	1086	<0.100	61.0	1.1	<50.1	
12/14/05	0603017-001A	13.6	<0.9789	27.1	39.9	1280	2.9	35.4	0.5		3340
12/14/05	0512118-006A	20.0	<0.9984	30.8	56.6	599	2.7	42.4	0.5	30.9	3313
12/15/05	0512142-001A	13.5	<1.0309	23.8	38.9	492	1.7	79.3	1	<49.92	3245
12/15/05	0512142-002A	21.8	< 0.9684	40.4	47.6	1049	4.4		0.8	<49.96	2775
12/16/05	0512142-003A	18.6	<1.0024	29.4	48.0	859		29.9	1.1	27.4	3793
12/16/05	0512142-004A	19.7	< 0.9854	41.7	40.9		3.4	35.8	1.4	<50.12	2936
			-0.000+	41.7	40.9	834	4.2	30.3	1.7	25.8	4321
AVERAGE		18.7	NA	33.4	48.3	983.2	3.2	60.4	4.0	<u> </u>	
STANDARD DEV	IATION	3.2	NA	6.5	8.4	281.1	0.8	47.2	1.0 0.3		3742
COEFFICIENT O	- VARIATION	17.1%	NA	19.5%	17.4%	28.6%	25.0%	78.1%	32.3%	4.2	<u>1127</u> 30.1%

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
04/10/06	0604077-001A	40.8	<0.978	67.6	46.5	1467	2.0	35.9	1.47	27.7	5216
04/11/06	0604077-002A	47.5	<1.02	63.3	59.3	1345	6.0	36.4	1.11	24.5	4825
04/12/06	0604090-001A	27.9	<0.986	32.1	78.9	904	1.0	18.1	1.1	38.6	4274
04/13/06	0604090-002A	39.0	<0.995	50.6	42.3	995	3.3	69.6	1.58	45.6	4477
04/14/06	0604090-003A	40.5	<1.03	68,0	52.5	1292	8.5	38.7	1.21	25.8	4994
NA	NA										
NA	NA										
NA	NA										
NA	NA										
NA	NA								+		

AVERAGE		NA	56.3	55.9	1200.4	4.2	39.7	1,3	32.5	4757
STANDARD DEVIATION	6.3	NA	13.7	12.9	214.6	2.7	16.7	0.2	8.2	341
COEFFICIENT OF VARIATION	16.1%	NA	24.3%	23.0%	17.9%	65.8%	42.0%	15.6%	25.4%	7.2%

Analyses performed by Life Science Laboratories, Inc

.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V	Zn Zinc
08/07/06	0608136-001A	42.7	<1.01	39.4	38.5	838	2.8	117.3	1.01	28.5	3687
08/08/06	0608136-002A	41.3	<0.972	43.7	41.3	1133	4.0	35.6	1.21	27.5	4288
08/09/06	0608136-003A	22.0	<0.984	25.7	28.8	477	3.0	22.7	0.72	25.0	2271
08/10/06	0608136-004A	33.3	<1.00	40.0	47.5	1583	2.4	108.3	1.00	37.5	
08/11/06	0608136-005A	28.2	<0.968	33.9	57.3	888	1.0	36.3	0.61	48.4	3332
08/14/06	0608136-006A	35.0	<1.03	35.0	54.9	795	2.4	67.6	0.95	40.4	3389
08/15/06	0608136-007A	28.9	<0.965	26.3	68.4	509	0.3	149.1	0.59		3101
08/16/06	0608136-008A	23.3	< 0.962	24.9	28.9	553	<0.096	44.9	0.54	78.9	2806
08/17/06	0608136-009A	27.9	<0.960	35.8	48.0	960	< 0.096	37.5	0.66	30.5	3449
08/18/06	0608136-010A	21.8	<0.970	26.7	46.1	2262	2.1	63.0	0.65	<u>34.9</u> 36.4	6635
								00.0	0.00		2747
VERAGE		30.4	NA	33.1	46.0	999.8	3.2	68.2	0.8	27.0	0570
TANDARD DEV		7.1	NA	6.5	11.8	524.2	0.8	40.3		27.0	3570
OEFFICIENT OF	VARIATION	23.4%	NA	19.6%	25.6%	52.4%	25.0%	59.0%	<u>0.2</u> 27.5%	4.2	<u>1149</u> 32.2%

SAMPLE COLLECTION DATE	LAB	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
04/23/07	0704181-001A	33.2	<0.996	42.3	51.5	1079	7.4	65.6	<0.996	27,4	3901
04/23/07	0704181-002A	30.5	<1.0152	54.1	43.1	1100	4.5	39.8	<1.0152	16.9	4315
04/24/07	0704181-003A	32.6	<1.0032	58.5	49.3	1338	6.0	37.6	<1.0032	21.7	11704
04/24/07	0704181-004A	40.8	<0.9646	89.0	54.9	1336	5.0	39.3	1.558	17.8	6233
04/25/07	0704181-005A	45.0	<1.015	94,3	54.4	1450	6.9	44.2	1.667	17.4	6018
04/25/07	0704181-006A	36.2	<1.0244	62.3	63.8	1340	3.6	62.3	<1.0244	21.3	4728
04/26/07	0704186-001A	40.8	<0.9997	100	47.7	1615	5.9	56.1	1.307	17.7	6537
04/26/07	0704186-002A	34.4	<0.9945	66.6	65.8	1301	3.7	133.1	0.995	19.9	5508
04/27/07	0704186-003A	34.1	<1.0088	59.8	201.8	1009	7.1	85.4	<1.0088	34.9	4501
04/27/07	0704186-004A	33.1	<0.9684	42.8	75.1	968	3.7	145.3	<0.9684	<u> </u>	3874

AVERAGE	36.1	NA	67.0	70.7	1253	5.4	70.9	1.4	22.4	5732
STANDARD DEVIATION	4.4	NA	19.6	44.6	197	1.4	37.0	0.3	5.8	2192
COEFFICIENT OF VARIATION	12.1%	NA	29.2%	63.1%	15.7%	25.8%	52.3%	18.7%	25.7%	38.2%
										00.270

Analyses performed by Life Science Laboratories, Inc

.

SAMPLE									1		
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	<u> </u>	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel		Vanadium	
08/09/07	0708082-001A	38.9	<0.972	38.9	52.7	2187	3.5	56.7	1.46	39.7	3240
08/10/07	0708082-002A	39.3	<1.0032	30.1	275.9	828	2.4	242	2.17	41.0	
08/14/07	0708121-001A	36.7	<1.002	45.9	43.4	919	4.3	91.9	1.67	30.9	3344
08/14/07	0708121-002A	36.0	<0.96	45.6	55.2	1120	5.1	40.8	2.16		3925
08/15/07	0708121-003A	31.7	<0.9768	32.6	154.7	2035	2.4	130.2	1.79	36.8	4160
08/15/07	0708121-004A	50.7	<1.014	85.8	38.2	140	6.4	28.9	1.79	34.2	3337
08/16/07	0708121-005A	46.4	<5.031	54.2	44.1	759	5.6	92.9		25.7	5694
08/16/07	0708121-006A	63.5	<1.0332	88.6	36.2	2509	8.9	26.6	<5.031	<24.768	4102
08/17/07	0708121-007A	37.9	<1.0257	46.6	41.8	1026	4.6		1.99	22.9	6494
08/17/07	0708121-008A	49.4	<1.0005	52.7	35.4	934	4.0	<u>31.6</u>	1.81	32.3	4655
						004	4.9	23.3	1.47	19.3	4402
VERAGE		43.0	NA	52.1	77.7	1246	2.0	70.0			
TANDARD DEV	IATION	9.0	NA	19.0			3.2	76.5	1.8	27.0	4335
OEFFICIENT O		20.8%	NA		74.2	708	0.8	65.0	0.2	4.2	1002
<u></u>		20.070	- MA	36.5%	95.4%	56.8%	25.0%	84.9%	13.6%	15.6%	23.1%

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
04/25/08	0805009-001A	56.4	<1.0036	131.2	46.3	1775.6	10.0	26.2	1.2	27.0	7642.8
04/28/08	0805009-002A	76.3	<1.0068	83.9	42.0	1342.4	5.5	52.0	1.5	21.8	6040.8
04/29/08	0805009-003A	43.5	<0.966	37.8	58.0	885.5	2.4	161.0	<1.2	35,4	3783.5
04/29/08	0805009-004A	71.3	<1.0192	87.4	61.9	1674.4	7.1	56.8	1.4	27.7	5896.8
04/30/08	0805021-001A	37.8	<1.0244	48.1	69.3	1024.4	2.9	65.4	<1.3	38.6	3861.2
04/30/09	0805021-002A	60.6	<0.9841	83.3	83.3	1135.5	9.1	27.3	1.5	24.2	5904.6
05/01/08	0805021-003A	38.6	<0.9864	42.7	56.7	813.8	2.5	33.7	<1.2	36.2	3945.6
05/01/08	0805021-004A	71.8	<0.9828	98.3	43.8	1512.0	7.1	24.9	2.0	18.9	7560.0
05/02/08	0805021-005A	30.7	<0.9684	36.3	58.1	677.9	2.8	37.9	<1.2	31.5	5326.2
05/02/08	0805021-006A	56.6	<1.0218	69.2	52.7	1179.0	4.9	36.2	1.3	41.7	6523.8

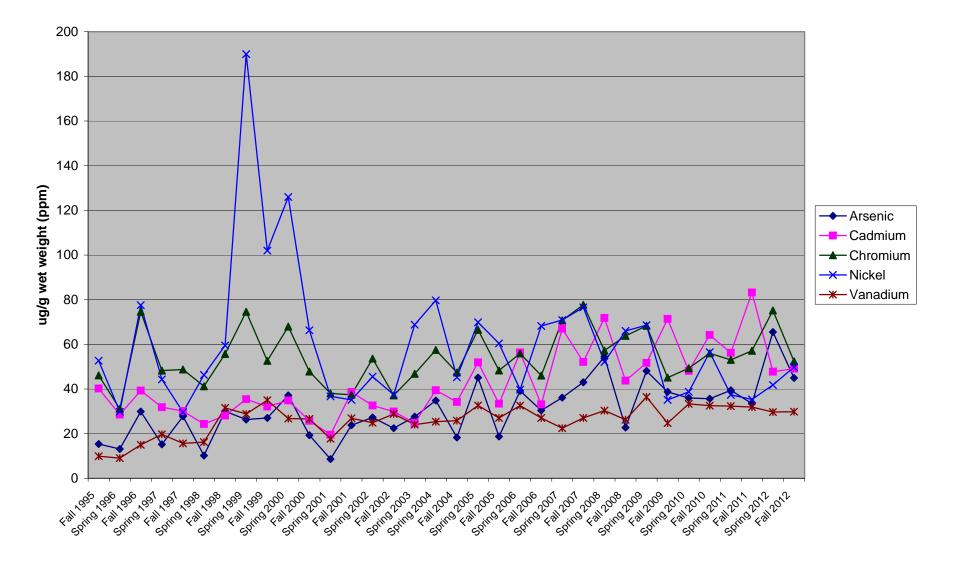
AVERAGE	54.4	NA	71.8	57.2	1202	5.4	52.1	1.5	30.3	5649
STANDARD DEVIATION	15.2	NA	29.3	11.8	351	2.7	38.6	0.7	7.2	1355
COEFFICIENT OF VARIATION	28.0%	NA	40.8%	20.7%	29.2%	49.0%	74.0%	16.8%	23.7%	24.0%
										1.1070

Analyses performed by Life Science Laboratories, Inc

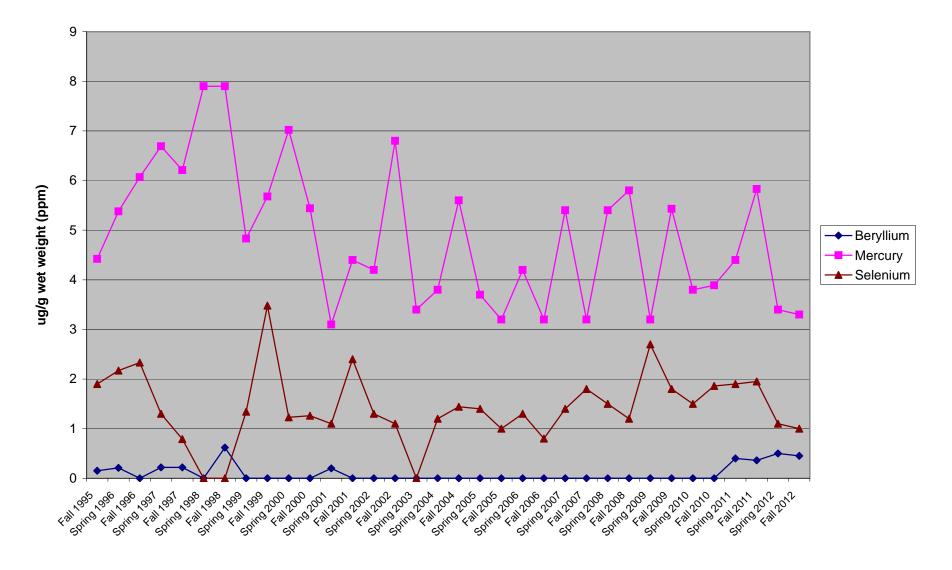
i

SAMPLE											
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	##	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel		Vanadium	
12/19/08	0812217-001A	23.7	<1.0066	48,9	65.4	1006.6	7.9	42.4	1.1	20.1	4242.1
12/19/08	0812217-002A	20.5	<1.0231	50.4	55.1	1495.3	6.1	60.6	1.2	18.1	3777.0
12/20/08	0812217-003A	25.7	<1.029	58.8	28.7	808.5	6.1	52.9	1.5	17.6	4851.0
12/22/08	0812217-004A	25.3	<0.9792	23.7	62.0	546.7	4.8	39.2	<0.9792	49.8	2366.4
12/23/08	0812217-005A	<20.331	<20.331	45.2	143.1	753.0	10.5	143.1	<20.331	43.0	3087.3
12/23/08	0812217-006A	20.4	<0.9828	25.7	42.3	831.6	3.1	34.0	<0.9828		
12/24/08	0812217-007A	18.0	<0.9776	32.3	112.8	511.4	4.9	195.5	1.2	24.2	2268.0
12/29/08	0901008-001A	38.3	<0.975	66.8	43.5	2700.0	5.6	28.5	1	34.6	3008.0
12/30/08	0901008-002A	17.9	<0.9685	48.4	41.0	1192.0	5.6	24.6	1.3	18.0	4800.0
12/30/08	0901008-003A	14.4	<0.988	36.5	44.1	912.0	3.6		1.1	13.4	3650.8
						312.0	3.0	38.8	<0.988	22.8	2812.0
VERAGE		22.7	NA	43.7	63.8	1076	£0				
TANDARD DEV	IATION	6.5	NA	13.3	34.3		5.8	66.0	1.2	26.2	3486
DEFFICIENT O	F VARIATION	28.7%	NA	30.4%		608	2.0	53.9	0.2		886
				30.4%	53.8%	56.5%	_ 34.7%	81.8%	12.3%	44.1%	25.4%

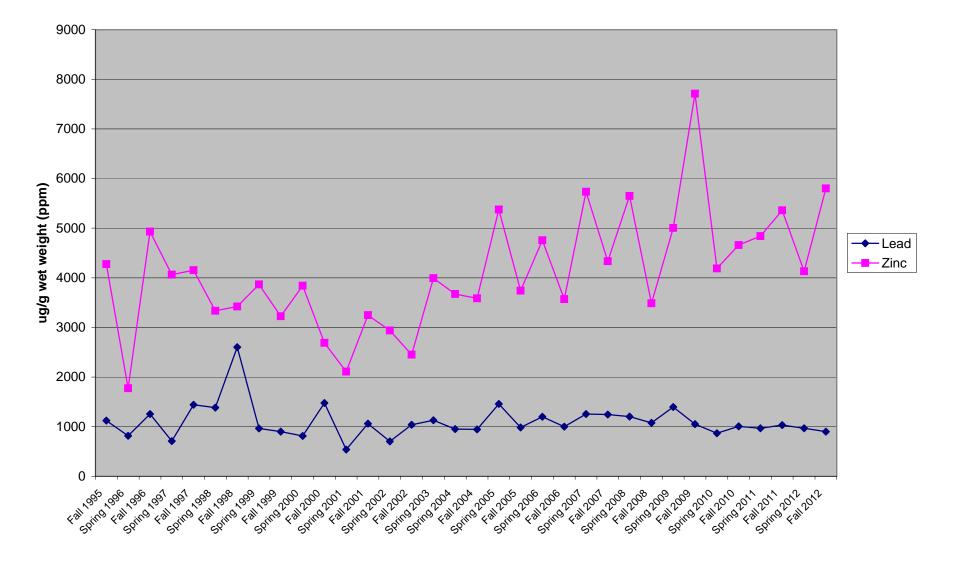
Sample	T					·	1				
Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	7.
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	v Vanadium	Zn Zinc
5/11/2009	0905077-001A						mercury		Scientium	Variacium	200
		38.8	<1.0	32.9	69.2	1012.8	2.6	50.6	1.1	41.4	3798
5/11/2009	0905077-002A	48.4	<1.0	60.0	72.3	999.7	2.9	35.4	3.8	32.3	4537.1
5/12/2009	0905077-003A	64.2	<1.0	70.6	58.5	1203.0	3.4	27.3	5.1	36.1	5453.6
5/12/2009	0905077-004A	80.6	<1.0	80.6	61.3	3707.6	5.6	96.7	5.3	26.6	6931.6
5/13/2009	0905106-001A	51.2	<1.0	56.2	62.8	1156.4	3.7	65.3	2.5	38.0	4790.8
5/13/2009	0905106-002A	39.7	<1.0	33.2	137.7	972.0	1.9	170.1	1,1	55.1	4131
5/14/2009	0905106-003A	45.4	<1.0	57.0	50.8	1463.0	4,4	54.7	2.0	29.3	7700
5/14/2009	0905106-004A	39.4	<1.0	41.1	53.4	985.2	2.7	55.0	1.7	34.5	4269.2
5/15/2009	0905106-005A	37.3	<1.0	51.1	57.6	1703.1	3.2	51.9	1.2	31.6	4209.2
5/15/2009	905106-006A	35.6	<1.0	34.7	59.5	769.1	1.8	78.6	<1.0	31.8	4217.2
						100.1	1.0	70.0	1.0	39.1	4217.7
Average		48.1	NA	51.7	68.3	1397.2	3.2	68.6	2.7	20.4	5004.0
Standard Dev	viation	14.3	NA	16.3	25,2	855.2				36.4	5004.6
Coefficient of		29.7%	NA				1.1	40.8	1.7	8.0	1309.9
		20.170	INA	31.6%	36.9%	61.2%	34.8%	59.5%	63.1%	22.0%	26.2%
Sample											
Collection	Lab	As	Be	Cď	Cr	Pb	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmlum	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
10/16/2009	0910091-006A	29	<1.0	44	58	620	3.2	48	2	26	26000
10/10/19/09	0910091-007A	50	<1.0	86	38	1500	5.7	23	1.1	27	6300
10/20/2009	0910091-008A	35	<1.0	51	37	710	4.1	29	<1.0	23	4200
10/20/2009	0910091-009A	50	<1.0	88	41	1300	7.4	45	1.2	21	6100
10/21/2009	0910113-008A	46	<1.0	74	48	1300	2.6	32	1.1	36	5600
10/22/2009	0910113-009A	45	<1.0	87	36	1100	2.8	23	1.2	25	6200
10/22/2009	0910113-010A	29	<1.0	43	37	680	7.9	24	<1.0	30	3900
10/23/2009	0910113-011A 0910113-012A	30	<1.0	64	78	900	3.8	55	2.5	26	5100
10/24/2009	0910113-012A	33	<1.0	77	43	1000	8.9	40	2.6	18	6000
	0310113-013A	40	<1.0	100	35	1400	7.9	32	2.7	15	7700
Average		38.7	NA	74 4					· · · · · · · · · · · · · · · · · · ·		·
Standard D	eviation	8.6	NA NA	<u>71.4</u> 20.0	45.1	1051	5.43	35.1	1.8	24.7	7710
Coefficient (22.1%		20.0	13.5	318.8	2.4	11.3	0.7	6.0	6518.4
				20.170	30.0%	30.3%	44.5%	32.3%	40.3%	24.1%	84.50%


	1										
Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
5/24/2010	1006054-013A	45.0	<1.0	63.0	55.0	1000.0	3.4	47.0	1.8	38.0	5200
5/25/2010	1006054-014A	34.0	<1.0	44.0	48.0	660.0	2.5	44.0	1.1	35.0	3800
5/25/2010	1006054-015A	43.0	<1.0	72.0	47.0	1000.0	4,1	31.0	1.6	21.0	6300
5/26/2010	1006054-016A	24.0	<1.0	36.0	35.0	820.0	2,4	26.0	<1.0	28.0	3400
5/26/2010	1006054-017A	30.0	<1.0	49.0	46.0	1500.0	3.3	43.0	<1.0	35.0	4300
5/27/2010	1006054-018A	27.0	<1.0	39.0	40.0	530.0	4.5	57.0	<1.0	27.0	3000
5/27/2010	1006054-019A	34.0	<1.0	54.7	53.0	1100.0	5.8	38.0	1.3	28.0	4200
5/28/2010	1006054-020A	32.0	<1.0	32.0	57.0	560.0	3.5	27.0	<1.0	54.0	3300
5/28/2010	1006054-021A	37.0	<1.0	45.0	56.0	720.0	3.3	46.0	<1.0	33.0	
5/29/2010	1006054-022A	54,0	<1.0	46.0	56.0	800.0	5.3	28.0	<1.0	34.0	4300
	·······					000.0	0.0	20.0	\$1.0	34.0	4100
Average	<u>, , , , , , , , , , , , , , , , , , , </u>	36.0	NA	48.1	49.3	869.0	3.8	38.7	1.5	33.3	4190.0
Standard Dev	viation	9.1	NA	12.3	7.5	292.4	1.1	10.4	0.3		
Coefficient of	variation	25.2%	NA	25.5%	15.2%					8.8	971.2
				20.070	10.2 /0	33.6%	29.3%	26.9%	21.4%	26.6%	23.2%
Sample	Lah	····									
Sample Collection	Lab #	As	Be	Cd	Cr	РЬ	Hg	Ni	Se	v	Zn
Sample	Lab # 1010020-013A	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
Sample Collection Date	#	As Arsenic 64	Be Beryllium <1.0	Cd Cadmium 66	Cr Chromium 67	Pb Lead 990	Hg Mercury 4.6	Ni Nickel 160	Se Selenium 3.9	V Vanadium 26	Zn Zinc 5200
Sample Collection Date 9/27/2010	# 1010020-013A	As Arsenic	Be Beryllium <1.0 <0.94	Cd Cadmium 66 73	Cr Chromium 67 82	Pb Lead 990 660	Hg Mercury 4.6 2.6	Ni Nicke1 160 36	Se Selenium 3.9 1.7	V Vanadium 26 39	Zn Zinc 5200 4100
Sample Collection Date 9/27/2010 9/28/2010	# 1010020-013A 1010020-014A	As Arsenic 64 30	Be Beryllium <1.0	Cd Cadmium 66 73 70	Cr Chromium 67 82 33	Pb Lead 990 660 870	Hg Mercury 4.6 2.6 6.8	Ni Nickel 160 36 26	Se Selenium 3.9 1.7 1.1	V Vanadium 26 39 21	Zn Zinc 5200 4100 4400
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010	# 1010020-013A 1010020-014A 1010020-015A	As Arsenic 64 30 26	Be Beryllium <1.0 <0.94 <0.94	Cd Cadmium 66 73	Cr Chromium 67 82	Pb Lead 990 660 870 840	Hg Mercury 4.6 2.6 6.6 4.1	Ni Nickel 160 36 26 74	Se Selenium 3.9 1.7 1.1 1.3	V Vanadium 26 39 21 31	Zn Zinc 5200 4100 4400 4800
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A	As Arsenic 64 30 26 30	Be Beryllium <1.0 <0.94 <0.94 <1.0	Cd Cadmium 66 73 70 55	Cr Chromium 67 82 33 52	Pb Lead 990 660 870	Hg Mercury 4.6 2.6 6.8 4.1 6.8	Ni Nickel 160 36 26 74 32	Se Selenium 3.9 1.7 1.1 1.3 1.9	V Vanadium 26 39 21 31 34	Zn Zinc 5200 4100 4400 4800 5500
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A	As Arsenic 64 30 26 30 49	Be Beryllium <1.0 <0.94 <0.94 <1.0 <0.98	Cd Cadmium 66 73 70 55 71	Cr Chromium 67 82 33 52 48	Pb Lead 990 660 870 840 990	Hg Mercury 4.6 2.6 6.6 4.1	Ni Nickel 160 36 26 74 32 49	Se Selenium 3.9 1.7 1.1 1.3 1.9 2.3	V Vanadium 26 39 21 31 34 25	Zn Zinc 5200 4100 4400 4800 5500 5100
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-018A	As Arsenic 64 30 26 30 49 38	Be Beryllium <1.0 <0.94 <0.94 <1.0 <0.98 <0.96	Cd Cadmium 66 73 70 55 71 72	Cr Chromium 67 82 33 52 48 55	Pb Lead 990 660 870 840 990 1200	Hg Mercury 4.6 2.6 6.6 4.1 6.8 3.8	Ni Nickel 160 36 26 74 32	Se Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2	V Vanadium 26 39 21 31 31 34 25 22	Zn Zinc 5200 4100 4400 4800 5500 5100 6600
Sample Collection Date 9/27/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-018A 1010020-019A	As Arsenic 64 30 26 30 49 38 45	Be Beryllium <1.0 <0.94 <0.94 <1.0 <0.98 <0.96 <1.0	Cd Cadmium 66 73 70 55 71 72 110	Cr Chromium 67 82 33 52 48 55 37	Pb Lead 990 660 870 840 990 1200 1300	Hg Mercury 4.6 2.6 6.6 4.1 6.8 3.8 2.5	Ni Nickel 160 36 26 74 32 49 40	Se Selenium 3.9 1.7 1.1 1.3 1.9 2.3	V Vanadium 26 39 21 31 34 25	Zn Zinc 5200 4100 4400 4800 5500 5100 6600 3100
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-018A 1010020-019A 1010020-020A	As Arsenic 64 30 26 30 49 38 45 21	Be Beryllium <1.0 <0.94 <0.94 <1.0 <0.98 <0.96 <1.0 <0.94	Cd Cadmium 66 73 70 55 71 72 110 33	Cr Chromium 67 82 33 52 48 55 37 69	Pb Lead 990 660 870 840 990 1200 1300 1300	Hg Mercury 4.6 2.6 6.6 4.1 6.8 3.8 2.5 2.4	Ni Nickel 160 36 26 74 32 49 40 60	Se Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2 1.1	V Vanadium 26 39 21 31 34 25 22 49	Zn Zinc 5200 4100 4400 4800 5500 5100 6600
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010 10/1/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-018A 1010020-019A 1010020-020A 1010020-021A	As Arsenic 64 30 26 30 49 38 45 21 27 26	Be Beryllium <1.0 <0.94 <1.0 <0.98 <0.96 <1.0 <0.94 <1.0 <1.0 <1.0	Cd Cadmium 66 73 70 55 71 72 110 33 38 54	Cr Chromium 67 82 33 52 48 55 37 69 58 59	Pb Lead 990 660 870 840 990 1200 1300 1300 1300 820 1100	Hg Mercury 4.6 2.6 6.8 4.1 6.8 3.8 2.5 2.4 1.6	Ni Nickel 160 36 26 74 32 49 40 60 56	Se Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2 1.1 1.4	V Vanadium 26 39 21 31 34 25 22 49 46	Zn Zinc 5200 4100 4400 4800 5500 5100 6600 3100 3700
Sample Collection Date 9/27/2010 9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010 10/1/2010 10/2/2010	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-019A 1010020-019A 1010020-021A 1010020-021A	As Arsenic 64 30 26 30 49 38 45 21 27 26 35.6	Be Beryllium <1.0 <0.94 <0.94 <1.0 <0.98 <0.96 <1.0 <0.94 <1.0 <0.94 <1.0 <1.0	Cd Cadmium 66 73 70 55 71 72 110 33 38 54 64.2	Cr Chromium 67 82 33 52 48 55 37 69 58 59 58 59	Pb Lead 990 660 870 840 990 1200 1300 1300 820 1100 1007	Hg Mercury 4.6 2.6 6.6 4.1 6.8 3.8 2.5 2.4 1.6 3.9 3.89	Ni Nickel 160 36 26 74 32 49 40 60 56	Se Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2 1.1 1.4	V Vanadium 26 39 21 31 34 25 22 49 46	Zn Zinc 5200 4100 4400 4800 5500 5100 6600 3100 3700
Sample Collection Date 9/27/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010 10/1/2010 10/2/2010 Average Standard D	# 1010020-013A 1010020-014A 1010020-015A 1010020-016A 1010020-017A 1010020-019A 1010020-019A 1010020-021A 1010020-021A	As Arsenic 64 30 26 30 49 38 45 21 27 26	Be Beryllium <1.0 <0.94 <1.0 <0.98 <0.96 <1.0 <0.94 <1.0 <1.0 <1.0	Cd Cadmium 66 73 70 55 71 72 110 33 38 54	Cr Chromium 67 82 33 52 48 55 37 69 58 59	Pb Lead 990 660 870 840 990 1200 1300 1300 1300 820 1100	Hg Mercury 4.6 2.6 6.6 4.1 6.8 3.8 2.5 2.4 1.6 3.9	Ni Nickel 160 36 26 74 32 49 40 60 56 32	Se Selenium 3.9 1.7 1.1 1.3 1.9 2.3 2.2 1.1 1.4 1.7	V Vanadium 26 39 21 31 31 34 25 22 49 46 32	Zn Zinc 5200 4100 4400 4800 5500 5100 6600 3100 3700 4100

Sample Collection	Lab	<u> </u>	De								
Date	#	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
6/7/2011	K1106170-013A	51.0	0.4	56.0	57.0	1400.0	3.1	29.0	1.8	35.0	4800
6/7/2011	K1106170-014A	46.0	0.3	76.0	49.0	1000.0	5.5	23.0	1.7	27.0	5200
6/8/2011	K1106170-015A	45.0	0.4	53.0	56.0	850.0	2.5	65.0	1.7	32.0	4900
6/8/2011	K1106170-016A	52.0	0.3	81.0	59.0	1700.0	7.0	34.0	1.5	29.0	5600
6/9/2011	K1106170-017A	39.0	0.3	61.0	50.0	1100.0	3.6	50.0	1.6	29.0	5200
6/9/2011	K1106170-018A	41.0	0.4	61.0	46.0	710.0	4.0	32.0	2.3	30.0	5100
6/10/2011	K1106170-019A	22.0	0.6	31.0	57.0	500.0	6.4	32.0	3.1	33.0	3300
6/10/2011	K1106170-020A	34.0	0.4	52.0	52.0	980.0	3.3	40.0	1.9	34.0	4300
6/11/2011	K1106170-021A	29.0	0.5	37.0	53.0	800.0	4,8	36.0	1.4	44.0	5000
6/11/2011	K1106170-022A	35.0	0.4	54.0	51.0	920.0	4.2	32.0	1.2	30.0	5000
			L	·					,. <u> </u>		
Average	· · · · · ·	39.4	0.4	56.2	53.0	996.0	4.4	37.3	1.9	32.3	4840.0
Standard De	viation	9.6	0.1	15.2	4.2	343.7	1.5	12.0	0.5	4.8	634.6
Coefficient of	f variation	24.4%	19.4%	27.1%	7.9%	34.5%	33.1%	32.3%	27.7%	14.9%	13.1%
Sample	<u> </u>										
Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
10/18/2011	K1110337-013A	34	0.28	64	44	870	3.9	33	1.4	32	6600
10/18/2011	K1110337-014A	33	0.33	240	95	1600	4.5	28	1.3	35	4400
10/19/2011	K1110337-015A	32	0.39	46	58	830	2.3	50	1.4	33	3900
10/19/2011	K1110337-016A	36	0.41	58	61	880	4.3	38	2	36	5000
10/20/2011	K1110337-017A	39	0.34	92	59	1100	13	42	1.9	28	6900
10/20/2011	K1110337-018A	29	0.32	72	54	1000	11	34	1.6	32	5300
10/21/2011	K1110337-019A	28	0.33	62	52	890	5.4	29	4.1	28	6300
10/21/2011	K1110337-020A	35	0.41	88	48	1500	7	26	2.7	30	5800
10/26/2011	K1110337-021A	26	0.52	35	59	690	3.2	45	1.3	33	4000
10/20/2011	K1110337-022A	43	0.27	75	41	960	3.7	28	1.8	32	5400
Verage	· · · · · · · · · · · · · · · · · · ·	33.5	0.36	02.0	674	4000	<u> </u>		4.07		
Standard D	eviation	5.1	0.36	83.2 57.8	57.1	1032	5.83	35.3	1.95	31.9	5360
				57.0	14.9	294.3	3.5	8.2	0.9	2.6	1055.4
Coefficient	of variation	15.4%	20.7%	69.4%	26.2%	28.5%	60.4%	23.2%	44.5%	8.3%	19.7%


Sample Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
6/12/2012	K1206354-001A	93	0.43	53	83	600	3	73	1.2	29	3800
6/12/2012	K1206354-002A	70	0.42	50	61	620	5	27	0.58	31	3400
6/13/2012	K1206354-003A	82	0.45	60	76	1100	3.5	35	0.92	26	4000
6/13/2012	K1206354-004A	60	0.44	45	66	420	2.5	42	0.84	29	3400
6/20/2012	K1206354-005A	42	1	29	43	830	1.8	37	0.71	26	2800
6/14/2012	K1206354-006A	53	0.38	59	53	1200	4.7	23	1.6	25	3600
6/15/2012	K1206354-007A	46	0.59	27	77	2000	2.5	53	0.87	45	3400
6/12/2012	K1206354-008A	66	0.37	55	57	400	4.8	27	1.6	32	4700
6/19/2012	K1206354	75	0.39	56	56	1300	3.2	25	1.4	28	4800
6/19/2012	K1206354-010A	68	0.42	45	180	1200	2.6	76	1	26	7400
										- · · · · · · ·	
Average		65.5	0.5	47.9	75.2	967.0 [°]	3.4	41.8	1.1	29.7	4130.0
		15.0	0.2	11.7	38.8	494.3	1.1	19.5	0.4	5.9	1301.3
Standard Devia	ation	15.9	0.2								
Standard Devia Coefficient of v		24.2%	38.8%	24.4%	51.6%	51.1%	33.2%	46.6%	33.7%	19.7%	31.5%
					51.6%	51.1%	33.2%	46.6%	33.7%	19.7%	31.5%
				24.4%			33.2%				· .
Coefficient of v Sample Collection	ariation Lab		38.8% Be	24.4% Cd	Cr	Pb	Hg	Ni	Se	V	Zn
Coefficient of v Sample Collection Date	ariation Lab #	24.2% As Arsenic	38.8% Be Beryllium	24.4% Cd Cadmium	Cr Chromium	Рb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
Coefficient of v Sample Collection Date 9/25/2012	Lab # K1210235-001A	24.2% As Arsenic 65	38.8% Be Beryllium 0.38	24.4% Cd Cadmium 48	Cr Chromium 50	Pb Lead 1000	Hg Mercury 2.4	Ni Nickel 45	Se Selenium 0.64	V Vanadium 28	Zn Zinc 5,000
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012	Lab # K1210235-001A K1210235-002A	24.2% As Arsenic 65 30	38.8% Be Beryllium 0.38 0.36	24.4% Cd Cadmium 48 28	Cr Chromium 50 47	Pb Lead 1000 490	Hg Mercury 2.4 1.9	Ni Nickel 45 37	Se Selenium 0.64 2.7	V Vanadium 28 25	Zn Zinc 5,000 2900
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012	Lab # K1210235-001A K1210235-002A K1210235-003A	24.2% As Arsenic 65 30 39	38.8% Be Beryllium 0.38 0.36 0.4	24.4% Cd Cadmium 48 28 34	Cr Chromium 50 47 46	Pb Lead 1000 490 480	Hg Mercury 2.4 1.9 1.6	Ni Nickel 45 37 68	Se Selenium 0.64 2.7 0.5	V Vanadium 28 25 38	Zn Zinc 5,000 2900 3400
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-004A	24.2% As Arsenic 65 30 39 41	38.8% Be Beryllium 0.38 0.36 0.4 0.39	24.4% Cd Cadmium 48 28 34 58	Cr Chromium 50 47 46 52	Pb Lead 1000 490 480 1500	Hg Mercury 2.4 1.9 1.6 4.2	Ni Nickel 45 37 68 29	Se Selenium 0.64 2.7 0.5 0.5	V Vanadium 28 25 38 30	Zn Zinc 5,000 2900 3400 5000
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-004A K1210235-005A	24.2% As Arsenic 65 30 39 41 41	38.8% Be Beryllium 0.38 0.36 0.4 0.39 0.34	24.4% Cd Cadmium 48 28 34 58 54	Cr Chromium 50 47 46 52 49	Pb Lead 1000 490 480 1500 660	Hg Mercury 2.4 1.9 1.6 4.2 2.7	Ni Nickel 45 37 68 29 29	Se Selenium 0.64 2.7 0.5 0.5 1.4	V Vanadium 28 25 38 30 23	Zn Zinc 5,000 2900 3400 5000 6400
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/2/2012 10/3/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-005A K1210235-005A	24.2% As Arsenic 65 30 39 41 41 41 44	Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4	24.4% Cd Cadmium 48 28 34 58 54 61	Cr Chromium 50 47 46 52 49 48	Pb Lead 1000 490 480 1500 660 1200	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4	Ni Nickel 45 37 68 29 29 29 28	Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1	V Vanadium 28 25 38 30 23 26	Zn Zinc 5,000 2900 3400 5000 6400 4800
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-004A K1210235-006A K1210235-006A	24.2% As Arsenic 65 30 39 41 41	38.8% Be Beryllium 0.38 0.36 0.4 0.39 0.34	24.4% Cd Cadmium 48 28 34 58 54	Cr Chromium 50 47 46 52 49	Pb Lead 1000 490 480 1500 660	Hg Mercury 2.4 1.9 1.6 4.2 2.7	Ni Nickel 45 37 68 29 29	Se Selenium 0.64 2.7 0.5 0.5 1.4	V Vanadium 28 25 38 30 23	Zn Zinc 5,000 2900 3400 5000 6400
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/3/2012 10/3/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-005A K1210235-005A	24.2% As Arsenic 65 30 39 41 41 41 44 48	Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4 0.4 0.51	24.4% Cd Cadmium 48 28 34 58 54 61 61 64	Cr Chromium 50 47 46 52 49 48 74	Pb Lead 1000 490 480 1500 660 1200 1100	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4 3.7	Ni Nickel 45 37 68 29 29 29 28 82	Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1 0.65	V Vanadium 28 25 38 30 23 23 26 34	Zn Zinc 5,000 2900 3400 5000 6400 4800 5100
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/2/2012 10/3/2012 10/4/2012 10/5/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-004A K1210235-005A K1210235-006A K1210235-007A K1210235-008A	24.2% As Arsenic 65 30 39 41 41 41 44 48 43	38.8% Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4 0.51 0.4	24.4% Cd Cadmium 48 28 34 58 54 61 61 64 48	Cr Chromium 50 47 46 52 49 48 74 52	Pb Lead 1000 490 480 1500 660 1200 1100 1000	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4 3.7 1.4	Ni Nickel 45 37 68 29 29 29 29 28 82 82 95	Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1 0.65 0.59	V Vanadium 28 25 38 30 23 23 26 34 30	Zn Zinc 5,000 2900 3400 5000 6400 4800 5100 17000
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/2/2012 10/3/2012 10/4/2012 10/5/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-005A K1210235-005A K1210235-006A K1210235-007A K1210235-008A K1210235-008A	24.2% As Arsenic 65 30 39 41 41 41 44 48 43 65	Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4 0.4 0.51 0.4 0.39	24.4% Cd Cadmium 48 28 34 58 54 61 61 64 48 62	Cr Chromium 50 47 46 52 49 48 74 52 53	Pb Lead 1000 490 480 1500 660 1200 1100 1100 1000	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4 3.7 1.4 6.4 4	Ni Nickel 45 37 68 29 29 29 28 82 95 52 33	Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1 0.65 0.59 1.2	V Vanadium 28 25 38 30 23 26 34 30 34 30 34 30	Zn Zinc 5,000 2900 3400 5000 6400 4800 5100 17000 5200
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/2/2012 10/3/2012 10/4/2012 10/5/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-005A K1210235-005A K1210235-006A K1210235-007A K1210235-008A K1210235-008A	24.2% As Arsenic 65 30 39 41 41 44 48 43 65 33 44.9	Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4 0.51 0.4 0.39 0.35	24.4% Cd Cadmium 48 28 34 58 54 61 64 48 62 34 34 49.1	Cr Chromium 50 47 46 52 49 48 74 52 53 53 53 53	Pb Lead 1000 490 480 1500 660 1200 1100 1000 1100 470 900	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4 3.7 1.4 6.4 4 3.27	Ni Nickel 45 37 68 29 29 29 28 82 95 52 33 33	Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1 0.65 0.59 1.2 0.5 1.0	V Vanadium 28 25 38 30 23 26 34 30 34 30 34 30 29.8	Zn Zinc 5,000 2900 3400 5000 6400 4800 5100 17000 5200
Coefficient of v Sample Collection Date 9/25/2012 9/26/2012 9/27/2012 10/2/2012 10/3/2012 10/3/2012 10/5/2012 10/5/2012 10/5/2012	Lab # K1210235-001A K1210235-002A K1210235-003A K1210235-003A K1210235-005A K1210235-005A K1210235-007A K1210235-009A K1210235-009A K1210235-010A	24.2% As Arsenic 65 30 39 41 41 44 48 43 65 33	38.8% Be Beryllium 0.38 0.36 0.4 0.39 0.34 0.4 0.51 0.4 0.51 0.4 0.39 0.35	24.4% Cd Cadmium 48 28 34 58 54 61 64 64 48 62 34	Cr Chromium 50 47 46 52 49 48 74 52 53 53 53	Pb Lead 1000 490 480 1500 660 1200 1100 1100 1100 470	Hg Mercury 2.4 1.9 1.6 4.2 2.7 4.4 3.7 1.4 6.4 4	Ni Nickel 45 37 68 29 29 29 28 82 95 52 33	Se Selenium 0.64 2.7 0.5 0.5 1.4 1.1 0.65 0.59 1.2 0.5	V Vanadium 28 25 38 30 23 26 34 30 34 30 34 30	Zn Zinc 5,000 2900 3400 5000 6400 4800 5100 17000 5200 3200

Analysis performed by Life Science Laboratories, Inc.


VI.A. Mean Values Ash Data Wet Weight

VI.B. Mean Values Ash Data Wet Weight

VI.C. Mean Values Ash Data Wet Weight

SAMPLE									T		
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel		Vanadium	Zinc
10/26/98	980808	34.2	0.92	30.6	54.8	979	7.99	57.3	<1.14	37.9	4090
10/26/98	980809	29.9	0.66	33.4	59.6	982	8.10	52.7	<1.27	40.0	4970
10/27/98	980810	46.8	0.96	36.4	180	1840	8.96	259	<3.21	47.0	4630
10/27/98	980811	31.6	0.83	39.9	61.6	18500	8.60	50.2	<1.23	32.9	5030
10/28/98	980812	42.7	0.84	39.7	55.4	1980	10.4	42.5	<1.27	39.9	4300
10/28/98	980813	36.2	0.70	46.2	83.1	1880	11.4	97.3	<1.53	47.8	5720
10/29/98	980814	49.8	0.85	43.7	82.2	1310	12.1	71,1	<1.31	42.1	1880
10/29/98	980815	41.4	0.92	40.5	59.8	3510	18.7	22.6	<1.31	35.1	5050
10/30/98	980816	36.8	0.65	28.2	45.8	914	9.04	50.7	<3.10	51.4	3840
10/30/98	980817	39.2	0.65	28.3	44.3	1410	7.87	74.4	<1.28	35.1	4990
AVERAGE		38.9	0.80	36.7	72.7	3331	10.3	77.8	N/A	40.9	4450
STANDARD DEVI		6.1	0.12	6.0	37.8	5108	3.1	63.3	N/A	5.8	1002
COEFFICIENT OF	- VARIATION	<u>15.7%</u>	14.7%	16.4%	52%	153.4%	30.2%	81%	N/A	14.2%	22.5%

.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
04-19-99	990215	38.0	<0.62	36.8	62.6	950	5.70	91.2	1.60	38.6	3580
04-19-99	990216	25.5	<0.56	36.8	128.0	2090	4.30	38.1	1.30	41.0	10700
04-20-99	990217	34.6	<0.66	39.1	62.6	970	5.10	82.8	1.70	43.0	3640
04-20-99	990218	26.0	<0.61	42.7	61.3	815	7.00	<u>39.8</u>	1.70	25.0	3650
04-21-99	990219	36.2	<0.63	45.8	65.0	1120	7.30	1910.0	1.90	35.0	4890
04-21-99	990220	<u>39</u> .0	<0.65	58.2	299.0	1090	6.90	57.9	2.30	42.5	5010
04-22-99	990221	29.7	<0.61	43.6	54.9	1270	5.10	48.2	1.10	38.9	3600
04-22-99	990222	37.2	<0.68	54.0	80.5	1560	7.00	42.7	1.60	32.8	4670
04-23-99	990223	37.7	<0.62	50.2	64.5	1060	6.00	36.6	2.10	37.5	4200
04-23-99	990224	31.1	<0.64	43.6	68.9	1220	7.20	55.9	1.70	30.4	4290
		33.5	N/A	45.1	94.7	1215	6.16	240	1.70	36.5	4823
STANDARD DEVI		4.8	N/A	6.8	70.9	350	1.01	557	0.33	5.4	2027
COEFFICIENT OF	VARIATION	14.3%	N/A	15.1%	74.8%	28.8%	16.5%	231.7%	19.5%	14.9%	42.0%

Analyses performed by ELS.

11-08-99	990747	37.5	<3.2	37.9	76.1	999	7.25	305.0	<3.2	46.8	4020
11-08-99	990748	43.5	<3.6	42.6	68.5	1130	7.71	378.0	4.90	43.1	4650
11-09-99	990749	43.5	<3.2	41.4	70.2	1350	6.18	85.1	<3.2	63.9	4130
11-09-99	990750	30.4	<3.1	40.6	76.1	883	6.88	61.9	<3.1	43.8	3700
11-10-99	990751	33.6	<3.3	40,7	85.6	1130	6.01	80.0	<3.3	53.8	4410
11-10-99	990752	34.4	<3.3	48.3	69.0	1900	7.06	58.2	<3.3	36.0	4510
11-11-99	990753	36,2	<3.1	40.0	58.6	1190	6.57	48.9	<3.1	61.6	3900
11-11-99	990754	33.4	<3.3	45.6	67.6	1200	10.20	59.0	<3.3	41.2	
11-12-99	990755	32.6	<3.4	38.2	69.4	972	8.64	54.8	<3.4	41.2	4680
11-12-99	990756	33.4	<3.2	51.1	55.8	1210	9.01	225.0	<3.2	32.6	<u>3810</u>
									-0.2	32.0	5020
VERAGE		35.9	N/A	42.6	69.7	1196	7.55	400	4.66		
TANDARD DEV	ATION	4.2	N/A	4.1			7.55	136	4.90	46.3	4283
OEFFICIENT OF	VARIATION	11.8%	N/A	9.7%	8.1	267	1.28	115	0.00	9.9	413
		1.070	N/A	9.7%	11.6%	22.4%	16.9%	<u>84.9%</u>	0.0%	21.3%	9.6%

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Selenium	V Vanadium	Zn Zinc
05/08/00	2000-0243	49.7	<0.63	45.5	75.4	1350	9.00	130.0	1.50	42.2	4000
05/08/00	2000-0244	34.1	<0.60	41.5	75.9	843	6.40	69.3	1.40	29.9	4030
05/09/00	2000-0245	91.8	<0.63	48.3	82.4	1390	10,70	309.0	3.30	31.1	6970
05/09/00	2000-0246	32.3	<0.65	40.3	119.0	976	8.00	151.0	1.20	29.6	4720
05/10/00	2000-0247	39.9	< 0.33	43.5	72.6	901	7.90	51.7	1.20	30.4	7590
05/10/00	2000-0248	32.9	<0.62	43.1	76.8	990	8.20	59.0	1.40	28.5	3680
05/11/00	2000-0249	66.4	<0.62	48.8	131.0	891	12.80	358.0	1.90	39.4	3800
05/11/00	2000-0250	43.4	<0.64	41.6	66.2	1090	7.30	38.0	<0.64	<u> </u>	<u>3800</u>
05/12/00	2000-0251	32.3	<0.62	36.3	70.3	853	9.60	357.0	1.70	33.4	4620
05/12/00	2000-0252	46.8	<0.67	51.6	89.8	1010	9.00	56.4	1.90	34.7	4210
							0.00	00.4	1.00		4210
		47.0	NA	44.1	85.9	1029	8.89	158	1.55	33.9	4869
COEFFICIENT O		18.0	NA	4.3	20.6	185	1.73	125	0.78	4.7	1280
JOLI FICIENT O	- VARIATION	38.4%	NA	9.8%	24.0%	18.0%	19.5%	79.3%	50.1%	13.7%	26.3%
Analyses performed b	y ELS. 2000-0785	35.6	10.05								
12/11/00	2000-0786		< 0.65	36.0	54.1	1300	12.00	42.0	1.40	57.0	4010
12/11/00	2000-0787	19.5	<0.61	23.1	48.3	826	6.71	36.2	1.20	27.8	2350
12/12/00		31.2	<0.66	35.5	66.2	990	5.09	60.0	1.80	49.5	3590
12/12/00	2000-0788	28.9	<0.68	42.7	63.1	861	6.72	52.1	1.60	36.1	4050
12/13/00	2000-0789	19.1	<0.67	36.2	92.6	1080	5.84	419.0	1.80	26.9	4840
	2000-0790	20.2	<0.68	35.9	68.0	1160	<u>7.50</u>	64.6	1.80	38.4	3560
12/13/00	2000-0791	19.6	<0.67	36.1	69.6	938	8.31	38.1	1.60	24.2	2960
12/14/00	2000-0792	28.5	<0.68	32,4	71.6	1160	7.44	64.2	1.80	35.3	2980
12/14/00	2000-0793	21.7	<0.58	31.3	47.1	1110	5.70	61.8	1.80	25.4	3880
12/15/00	2000-0794	26.2	<0.64	26.4	45.1	9410	5.37	32.6	1.60	25.9	2700
VERAGE		25.1	NIA T							10.0	<u> </u>
		2 <u>0, I</u>	NA	33.6	62.6	1884	7.07	87 T	1.64	347	

STANDARD DEVIATION		IVA	33.6	62.6	1884	7.07	87	1.64	047	0.100	1
OCTOBINISTIC DEVIATION	5.5	NA	5.3	13.8	2513		444	1.64	34.7	3492	
COEFFICIENT OF VARIATION	22.1%	NA	the second s		and the second se	1.91	111	0.20	10.6	710	
		11/4	15.7%	22.0%	133.4%	27.1%	127.8%	11.9%	30.5%		6
								11,070	30.5%	20.3%	

SAMPLE COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium		Chromium	Lead	Mercury	Nickel		Vanadium	Zinc
03/19/01	01-0167	11.3	0.3	28.2	55.7	860	3.15	50.1	0.86	25.5	2660
03/19/01	01-0168	8.3	0,490	20.1	67.6	1080	2.85	29.3	1.00	23.1	2450
03/20/01	01-0169	12.2	0.280	26.9	48.8	813	5.00	31.3	1.60	20.3	2230
03/20/01	01-0170	14.6	0.280	22.5	50.1	555	2.59	44.9	1.40	19.6	2190
03/21/01	01-0171	11.7	<0.19	23.0	33.7	458	4.10	32.2	1.30	15.3	2080
03/21/01	01-0172	10.6	0.340	26.8	46.0	574	5.63	36.7	1.70	27.0	6490
03/22/01	01-0173	15.5	0.350	41.4	87.8	746	4.73	96.0	1.20	31.4	2830
03/22/01	01-0174	8.3	0.370	22.2	45.1	511	4.72	63.6	1.20	26.9	2030
03/23/01	01-0175	11.4	<0.19	18.3	38.5	899	3.84	48.0	3.50	28.5	2680
03/23/01	01-0176	11.3	0.270	32.9	39.0	743	4.41	60.4	1.30	19.7	2690
								00.4	1.00	10.1	2090
		11.5	0.271	26.2	51.2	723.9	4.1	49.3	1.5	23.7	2840.0
STANDARD DEV		2.2	0.1	6.5	15.2	187.6	0.9	19.2	0.7	4.7	1244.0
COEFFICIENT O	FVARIATION	18.9%	19.7%	24.7%	29.7%	25.9%	22.9%	39.1%	46.9%	19.9%	43.8%
Analyses performed by	y ELS.								·		
<u>12/10/01</u>	01-0777	45.8	<0.65	58.3	42.8	3760	7.60	51.9	3.80	37.7	4880
12/10/01	01-0778	24.0	<0.64	33.6	39.6	672	7.80	27.7	1.90	32.2	3390
12/11/01	01-0779	28.8	<0.69	59.0	63.3	1200	9.30	49.4	2.80	31.0	4640
12/11/01	01-0780	27.2	<1.6	42.4	60.0	944	6.10	48.2	2.90	28.5	5040
12/12/01	01-0781	26.8	<0.69	37.3	53.9	799	5.60	64.8	3.70	41.7	3800
12/12/01	01-0782	30.7	<0.62	46.8	41.9	965	7.60	43.5	4.00	28.8	
12/13/01	01-0783	31.3	<0.63	50.6	38.4	815	6.60	40.7	2.80		4540
12/13/01	01-0784	32.1	<0.69	46.6	44.9	1740	2.80	53.3		33.5	3890
12/14/01	01-0785	47.6	<0.71	104.0	49.9	1660			2.90	28.1	3900
12/14/01	01-0786	18.7	<0.68	33.0	<u></u>		2.70	38.5	4.10	40.4	5590
			-0.00	0	09.0	1480	1.80	44.3	2.20	53.8	3060

12/14/01 01-0/86	18.7	<0.68	33.0	59.5	1480	1.80	44.3	2.20	53.8	3060
AVERAGE	31.3	NA	51.2	40.4	4400 5					
STANDARD DEVIATION	86	NA	19.6	<u>49.4</u> 8.7	1403.5 862.0	5.8	46.2	3.1	35.6	4273.0
COEFFICIENT OF VARIATION	27.3%	NA	38.4%	17.7%	61.4%	<u>2.4</u> 41.6%	<u>9.4</u> 20.4%	0.7	7.7	752.2
			••••••••••••••••••••••••••••••••••••••		01.170	41.070	20.4%	23.1%	21.5%	17.6%

COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
05/06/02	02-0241	30.7	<0.62	37.6	62.4	911	5.80	91.4	1.80	38.8	3310
05/06/02	02-0242	25.6	<0.64	29.0	57.5	732	2.80	79.5	1.50	31.3	3630
05/07/02	02-0243	47.3	<0.61	52.0	55.6	937	5.50	47.3	1.90	29.3	4300
05/07/02	02-0244	27.1	<0.61	49.6	114.0	769	8.10	<u>-47.3</u> 66.3	1.40	32.8	4010
05/08/02	02-0245	29.6	<0.67	57.3	79.0	1200	7.70	70.2	2.00		
05/08/02	02-0246	23.5	<0.65	30.5	66.8	835	2.40	76.9	0.71	38.0	5100
05/09/02	02-0247	37.0	< 0.63	34.0	70.7	975	4.30	37.7	1.20	30.6	3100
05/09/02	02-0248	23.6	< 0.62	23.7	46.5	751	2.90			30.2	2760
05/10/02	02-0249	44.9	<0.65	42.4	55.1	<u>912</u>	7.50	<u>35.6</u> 35.3	<u>1.20</u> 2.40	23.4	2610
05/10/02	02-0250	57.4	<0.67	59.9	73.1	962	6.80	<u> </u>		31.3	3660
				00.0		002	0.00	38.3	2.50	32.2	4990
AVERAGE		34.7	NA	41.6	68.1	898.4	5.4	58.0	1,7	31.8	3747.0
STANDARD DEV		11.0	NA	12.0	17. 9	131.5	2,1	20.1	0.5	4.1	815.4
COEFFICIENT O	F VARIATION	31.8%	NA	28.7%	26.3%	14.6%	38.2%	34.7%	32.2%	13.0%	21.8%
Analyses performed b	y ELS.				26.3%	14.6%	38.2%	34.7%	32.2%	13.0%	21.8%
Analyses performed b	y ELS. 02-0767	44.7	<u>NA</u>	28.7% 57.6	26.3% 60.9	14.6% 1310	<u>38.2%</u> 6.02	34.7% 56.8	32.2% 2.35		
Analyses performed b 12/02/02 12/02/02	y ELS. 02-0767 02-0768								······································	45.3	5380
Analyses performed b 12/02/02 12/02/02 12/03/02	y ELS. 02-0767 02-0768 02-0769	44.7	<1.34	57.6	60.9	1310	6.02	56.8	2.35 <1.34	45.3 38.2	5380 3020
Analyses performed b 12/02/02 12/02/02 12/03/02 12/03/02	y ELS. 02-0767 02-0768	44.7 21.8	<1.34 <1.34	57.6 32.4	60.9 46.8	<u>1310</u> 943	6.02 5.37 10.80	56.8 87.1 31.5	2.35 <1.34 1.26	45.3 38.2 35.1	5380 3020 2430
Analyses performed b 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02	y ELS. 02-0767 02-0768 02-0769	44.7 21.8 27.6	<1.34 <1.34 <1.21	57.6 32.4 28.9	60.9 46.8 36.6	1310 943 1060	6.02 5.37 10.80 8.80	56.8 87.1 31.5 33.7	2.35 <1.34 1.26 <1.45	45.3 38.2 35.1 82.1	5380 3020 2430 3880
Analyses performed b 12/02/02 12/02/02 12/03/02 12/03/02	y ELS. 02-0767 02-0768 02-0769 02-0770	44.7 21.8 27.6 24.7	<1.34 <1.34 <1.21 <1.45	57.6 32.4 28.9 39.1	60.9 46.8 36.6 47.9	1310 943 1060 868 2260	6.02 5.37 10.80 8.80 6.47	56.8 87.1 31.5 33.7 49.4	2.35 <1.34 1.26 <1.45 2.11	45.3 38.2 35.1 82.1 31.1	5380 3020 2430 3880 3370
Analyses performed b 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771	44.7 21.8 27.6 24.7 35.6	<1.34 <1.34 <1.21 <1.45 <0.68	57.6 32.4 28.9 39.1 40.4	60.9 46.8 36.6 47.9 57.7 48.5	1310 943 1060 868 2260 1820	6.02 5.37 10.80 8.80 6.47 19.90	56.8 87.1 31.5 33.7 49.4 55.6	2.35 <1.34 1.26 <1.45 2.11 2.19	45.3 38.2 35.1 82.1 31.1 30.9	5380 3020 2430 3880 3370 3170
Analyses performed b 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772	44.7 21.8 27.6 24.7 35.6 33.6	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71	57.6 32.4 28.9 39.1 40.4 45.3 60.9	60.9 46.8 36.6 47.9 57.7 48.5 49.7	1310 943 1060 868 2260 1820 2230	6.02 5.37 10.80 8.80 6.47 19.90 12.20	56.8 87.1 31.5 33.7 49.4 55.6 54.4	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72	45.3 38.2 35.1 82.1 31.1 30.9 32.7	5380 3020 2430 3880 3370 3170 4220
Analyses performed b 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773	44.7 21.8 27.6 24.7 35.6 33.6 32.9	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3	1310 943 1060 868 2260 1820 2230 1860	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5	5380 3020 2430 3880 3370 3170 4220 3340
Analyses performed b 12/02/02 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72 <0.63	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3	1310 943 1060 868 2260 1820 2230 1860 1320	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3	5380 3020 2430 3880 3370 3170 4220 3340 2700
Analyses performed b 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/06/02 12/06/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3	1310 943 1060 868 2260 1820 2230 1860	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5	5380 3020 2430 3880 3370 3170 4220 3340
Analyses performed b 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/06/02 12/06/02 VERAGE	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0776	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1 30.0	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.72 <0.72 <0.63 <0.63 NA	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3	1310 943 1060 868 2260 1820 2230 1860 1320 322	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52 3.31	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3 36.3	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35 1.30	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3 29.5	5380 3020 2430 3880 3370 3170 4220 3340 2700 1480
Analyses performed b 12/02/02 12/03/02 12/03/02 12/04/02 12/04/02 12/05/02 12/05/02 12/06/02 12/06/02	y ELS. 02-0767 02-0768 02-0769 02-0770 02-0771 02-0772 02-0773 02-0774 02-0775 02-0776 ATION	44.7 21.8 27.6 24.7 35.6 33.6 32.9 30.6 28.6 20.1	<1.34 <1.34 <1.21 <1.45 <0.68 <0.72 <0.71 <0.72 <0.63 <0.63	57.6 32.4 28.9 39.1 40.4 45.3 60.9 43.6 35.0 20.1	60.9 46.8 36.6 47.9 57.7 48.5 49.7 53.3 50.3 45.4	1310 943 1060 868 2260 1820 2230 1860 1320	6.02 5.37 10.80 8.80 6.47 19.90 12.20 9.91 8.52	56.8 87.1 31.5 33.7 49.4 55.6 54.4 57.7 39.3	2.35 <1.34 1.26 <1.45 2.11 2.19 2.72 2.11 1.35	45.3 38.2 35.1 82.1 31.1 30.9 32.7 32.5 31.3	5380 3020 2430 3880 3370 3170 4220 3340 2700

Analyses performed by ELS.

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Bervilium	Cd Cadmlum	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
06/02/03	15503164	18.0	<0.60	18.0	120.0	6500	1.60	270.0	<0.60	28.0	1700
06/02/03	15503165	25.0	<0.55	25.0	49.0	700	1.40	100.0	<0.55	29.0	15000
06/03/03	15503168	13,0	<0.57	16.0	23.0	1200	1.30	13.0	<0.57	12.0	1500
06/04/03	16103027	29.0	<0.65	33.0	40.0	910	3.20	130.0	<0.65	30.0	3800
06/04/03	16103028	19.0	<0.59	18.0	34.0	320	8.20	26.0	<0.59	14.0	1700
06/05/03	16103029	49.0	<0.66	44.0	62.0	870	5.10	47.0	<0.66	48.0	5100
06/05/03	16103030	42.0	<0.75	37.0	72.0	780	7.70	30.0	<0.75	31.0	3500
06/06/03	16103031	38.0	<0.63	38.0	54.0	750	4.30	50.0	<0.63	42.0	
06/06/03	16103032	45.0	<0.66	46.0	67.0	920	5.70	85.0	<0.66		3500
06/07/03	16103026	71.0	<0.61	38.0	65.0	830	4.50	93.0	<0.61	<u>28.0</u> 39.0	7200 5700
VERAGE		34.9	NIA	01.0	<u> </u>	1					
STANDARD DEVI	ATION	16.8	NA	31.3	58.6	1378.0	4.3	84.4	NA	30.1	4870.0
COEFFICIENT OF		48.1%	NA NA	10.6 34.0%	25.3 43.2%	1720.0 124.8%	2.4 54.7%	71.3 84.5%	NA NA	10.7	3809.7

Analyses performed by Upstate Laboratories inc.

· · · · · · · · · · · ·

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
06/14/04	E1540	38.0	<1.2	31.0	53.0	980	3.60	47.0	1.00	32.0	4200
06/14/04	E1541	29.0	<1.1	25.0	48.0	730	1.40	28.0	0.83	23.0	2900
06/15/04	E1542	45.0	<1.2	33.0	78.0	1500	2.90	65.0	1.30	51.0	3600
06/15/04	E1543	51.0	<12	45.0	100.0	1100	7,70	120.0	<5.9	<59	4000
06/16/04	E2029	39,0	<1.2	45.0	62.0	1100	5.90	62.0	1.50	36.0	4300
06/16/05	E2030	40.0	<1.3	48.0	58.0	1300	3.90	410	2.60	29.0	5100
06/17/05	E2031	31.0	<1.2	39.0	67.0	790	4.30	44.0	1.50	30.0	4200
06/23/04	E2626	33.0	<1.2	38.0	68.0	970	4.60	43.0	2.20	30.0	3900
06/25/04	E2627	61.0	<1.3	98.0	85.0	1900	7.50	110.0	2.20	34.0	7800
06/27/04	E2628	54,0	<1.2	79.0	75.0	1200	3.90	58.0	2.10	42.0	4500
AVERAGE		T (6.4							······		
STANDARD DEVI	ATION	42.1	NA	48.1	69,4	1157.0	4.6	98.7	1.5	30.7	4470.0
COEFFICIENT OF		10.0	NA	21.7	14.8	328.9	1.9	107.4	0.7	12.6	1229.7
JOEFFICIENT OF	VARIATION	23.7%	NA	45.1%	21.4%	28.4%	40.9%	108.8%	48.8%	41.0%	27.5%

Analyzes performed by O' Brien & Gere Laboratories, Inc.

SAMPLE COLLECTION DATE	LAB	As Arsenic	Be Beryllum	Cd Cadmlum	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Seleptum	V Vanadium	Zn Zinc
12/23/04	F1433	19.0	<1.3	36.0	44.0	730	5.50	37.0	0.93	28.0	
12/23/04	F1434	23	<1.3	47.0	65.0	2500	7.10	37.0	1.50		5100
12/27/04	F1513	27.0	<1.1	44.0	50.0	1200	16.00	44.0	1.00	28.0	4600
12/27/04	F1514	25.0	<1.2	35.0	59.0	820	9.10	130.0		42.0	4600
12/28/04	F1515	20.0	<1.3	40.0	100.0	1500	6.10	45.0	1.80	30,0	6000
12/28/04	F1518	25.0	<1.4	50.0	67.0	860	5.80		1.00	44.0	4100
12/29/04	F1517	23.0	<1.2	41.0	48.0	1000		98.0	1.40	24.0	4400
12/29/04	F1518	27.0	<1.3	53.0	65.0		4.30	35.0	1.20	41.0	3900
12/30/04	F1519	18.0	<1.2	43.0		1800	5,70	58.0	1.60	36.0	4600
12/30/04	F1520	23.0	<1.2	43.0	41.0	770	6.00	34.0	1.00	23.0	3600
		20.0	<u> </u>	43.0	64.0	790	4.20	<u>5</u> 6.0	1.70	28.0	4300
/ERAGE		23.0	NA	43.2	60.3	1197.0	7.0 1	57.4			
ANDARD DEVIA	TION	3.0	NA	5.4	16.1	549.0	3.3	30.2	1.3 0.3	32.4	4520.0
DEFFICIENT OF	VARIATION	13.0%	NA	12,5%	28.6%	45.9%	47.0%	52.7%	23.7%	22.6%	<u>633.7</u> 14.0%

Analyses performed by O' Brien & Gare Laboratories, Inc

SAMPLE							1		T		
COLLECTION	LAB	As	Be	Cđ	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	
05/16/05	0505100-001A	51.0	<1.1	51.0	64.0	1700	4.00	43.0	1.50	52.0	6200
05/16/05	0505100-002A	56.0	<1.2	49.0	74.0	1300	4.30	49.0	1.70	46.0	
05/17/05	0505100-003A	50.0	<1.1	56.0	80.0	1900	4.30	92.0	1.70	<u>48.0</u> 33.0	<u>6100</u>
05/17/05	0505100-004A	73.0	<1.2	75.0	83.0	2400	4.70	77.0			5900
05/18/05	0505131-001A	56.0	<1.1	62.0	84.0	1500	4.70		2.10	37.0	7600
05/18/05	0505131-002A	45.0	<1.2	62.0	72.0	2100	4.70	93.0	1.80	39.0	6200
05/19/05	0505131-003A	44.0	<1.2	58.0	65.0	1400	4.70	49.0	2.00	32.0	5900
05/19/05	0505131-004A	59.0	<1.2	68.0	71.0	1600		49.0	1.50	35.0	5400
05/20/05	0505131-005A	50.0	<1.2	60.0			5.90	55.0	1.70	36.0	7000
05/20/05	0505131-006A	53.0	<1.2		60.0	1600	0.75	61.0	1.10	47.0	6100
	0000101-000A		~1.2	77.0	140	1800	6.10	270	1.90	30.0	7600
AVERAGE	······	53.7	NA	64.0	70.0	1700.0					·
STANDARD DEV				<u>61.8</u>	79.3	1730.0	4.4	83.8	1.7		6400.0
	the second s	7.8	NA	8.8	21.6	316.4	1.4	64.4	0.3	6.9	707.1
COEFFICIENT O	F VARIATION	14.6%	NA	14.3%	27.3%	18.3%	31.2%	76.9%	16.0%	17.8%	11.0%

Analyses performed by Life Science Laboratories, Inc

SAMPLE							1		1		
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	l Ni	Se	l v l	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel		Vanadium	
12/12/05	0512118-001A	29.0	<1.2	49.0	61.0	1200	4.90	70.0	1.30	<120	
12/12/05	0512118-002A	24.0	<1.3	37.0	60.0	1900	3.10	49.0			8200
12/13/05	0512118-003A	20.0	<1.2	49.0	54.0	1400	3.90		1.60	26.0	3800
12/13/05	0512118-004A	25.0	<1.2	37.0	82.0	1300		230	0.86	37.0	4700
12/14/05	0603017-001A	18.0	<1.3	36.0	53.0		<0.12	73.0	1.30	<60	4000
12/14/05	0512118-006A	24.0	<1.2	37.0		1700	3.80	47.0	0.67	41.0	4400
12/15/05	0512142-001A	17.0			68.0		3.30	51	0.89	<60	3900
12/15/05	0512142-002A	27.0	<1.3	30.0	49.0	620	2.20	100	1.00	<63	3500
12/16/05	0512142-003A		<1.2	50.0	59.0	1300	5.40	37.0	1.40	34.0	4700
12/16/05		26.0	<1.4	41.0	67.0	1200	4.80	<u> </u>	2.00	<70	4100
12/10/05	0512142-004A	26.0	<1.3	55.0	54.0	1100	5.50	40.0	2.20	34.0	5700
VERAGE											
		23.6	NA	42.1	60.7	1244.0	4.1	74.7	1.3	34.4	4700.0
TANDARD DEV		3.8	NA	7.7	9.1	368,4	1.1	54.8	0.5	4.9	
OEFFICIENT O	F VARIATION	16.0%	NA	18.2%	15.1%	29.6%	26.8%	73.3%			1306.9
						20.070	/0.0 /0	13.3%	35.8%	14.2%	27.8%

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
04/10/06	0604077-001A	50.0	<1.2	83.0	57.0	1800	2.50	44,0	1.80	34.0	6400
04/11/06	0604077-002A	60.0	<1.3	80.0	75.0	1700	7.60	46.0	1.40	31.0	6100
04/12/06	0604090-001A	34.0	<1.2	39.0	96.0	1100	1.20	22.0	1.30	47.0	5200
04/13/06	0604090-002A	47.0	<1.2	61.0	51.0	1200	4.00	84.0	1.90	55.0	5400
04/14/06	0604090-003A	47.0	<1.2	79.0	61.0	1500	9.90	45.0	1.40	30.0	5800
NA	NA									00,0	
NA	NA						<u>├</u>				
NA	NA										
NA	NA										
NA	NA				·····				·	· · · · · · · · · · · · · · · · · · ·	

AVERAGE	47.6	NA	68.4	68.0	1460.0	5.0	48.2	1.6	39.4	5780.0
STANDARD DEVIATION	8.3	NA	16.6	16.1	272.8	3.2	20.0	0.2	9.9	440.0
COEFFICIENT OF VARIATION	17.5%	NA	24.3%	23.6%	18.7%	64.3%	41.5%	15.5%	25.1%	7.6%

Analyses performed by Life Science Laboratories, Inc.

ł

Ì

•

SAMPLE											
COLLECTION	LAB	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
DATE	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	
08/07/06	0608136-001A	51.0	<1.2	47.0	46.0	1000	3.30	140.0	1.20	34.0	4400
08/08/06	0608136-002A	51.0	<1.2	54.0	51.0	1400	4.90	44.0	1.50	34.0	5300
08/09/06	0608136-003A	29.0	<1.3	34.0	38.0	630	4.00	30	0.95	33.0	3000
08/10/06	0608136-004A	40.0	<1.2	48.0	57.0	1900	2.90	130.0	1.20	45.0	
08/11/06	0608136-005A	35.0	<1.2	42.0	71.0	1100	1.30	45.0	0.75	60.0	4000
08/14/06	0608136-006A	44.0	<1.3	44.0	69.0	1000	3.00	85	1.20		4200
08/15/06	0608136-007A	33,0	<1.1	30.0	78.0	580	0.29	170	· · · · · · · · · · · · · · · · · · ·	54.0	
08/16/06	0608136-008A	29.0	<1.2	31.0	36.0	690	<0.12		0.67	90.0	3200
08/17/06	0608136-009A	32.0	<1.1	41.0	55.0	1100		<u> </u>	0.67	38.0	4300
08/18/06	0608136-010A	27.0	<1.2	33.0	57.0		<0.11	43.0	0.76	40.0	7600
			(00.0	57.0	2800	2.60	78.0	0.80	45.0	3400
AVERAGE		37.1	NIA	40.4							
STANDARD DEV			NA	40.4	55.8	1220.0	2.2	82.1	1.0	47.3	4330.0
COEFFICIENT OF		8.5	<u>NA</u>	7.7	13.2	644.6	1.6	46.0	0.3	16.5	1259.4
	VONATION	22.9%	NA	19.1%	23.6%	52.8%	73.9%	56.0%	28.1%	35.0%	29.1%

Cd Cr Pb Hg Ni Se V Cadmium Chromium Lead Mercury Nickel Selenium Vanadium 2	mC		Be Beryilium	As Arsenic	LAB #	SAMPLE COLLECTION DATE
51.0 62.0 1300 8.90 79.0 <1.2 33.0 4			<1.2	40.0	0704181-001A	04/23/07
64.0 51.0 1300 5.30 47.0 <1.2 20.0 5		64.0	<1.2	36.0	0704181-002A	04/23/07
70.0 59.0 1600 7.20 45.0 <1.2 26.0 14			<1.2	39.0	0704181-003A	04/24/07
120 74.0 1800 6.80 53.0 2.10 24.0 8		120	<1.3	55.0	0704181-004A	04/24/07
<u>130 75.0 2000 9.50 61.0 2.30 24.0 8</u>		130	<1.4	62.0	0704181-005A	04/25/07
<u>79.0 81.0 1700 4.60 79.0 <1.3 27.0 6</u>	-	79.0	<1.3	46.0	0704181-006A	04/25/07
<u>130 62.0 2100 7.70 73.0 1.70 23.0 8</u>	1-		<1.3	53.0	0704186-001A	04/26/07
87.0 86.0 1700 4.90 174 1.30 26.0 7		87,0	<1.3	45.0	0704186-002A	04/26/07
77.0 260 1300 9.10 110 <1.3 45.0 5			<1.3	44.0	0704186-003A	04/27/07
			<1.2	41.0	0704186-004A	04/27/07
<u>53.0 93 1200 4.60 180 <1.2 36.0</u> 86.1 90.3 1600 6.9 90.1 1.9 28.4		***	<1.2 NA	41.0	_0704186-004A	04/27/07

AVERAGE	46.1	<u>NA</u>	86.1	90.3	1600	6.9	90.1	1.9	28.4	7280
STANDARD DEVIATION	7.8	NA	28.7	57.9	300	1.8	47.1	0.4	7.1	2652
COEFFICIENT OF VARIATION	16.8%	NA	33.3%	64.1%	18.8%	26.7%	52.3%	20.8%	25.1%	36.4%

Analyses performed by Life Science Laboratories, Inc

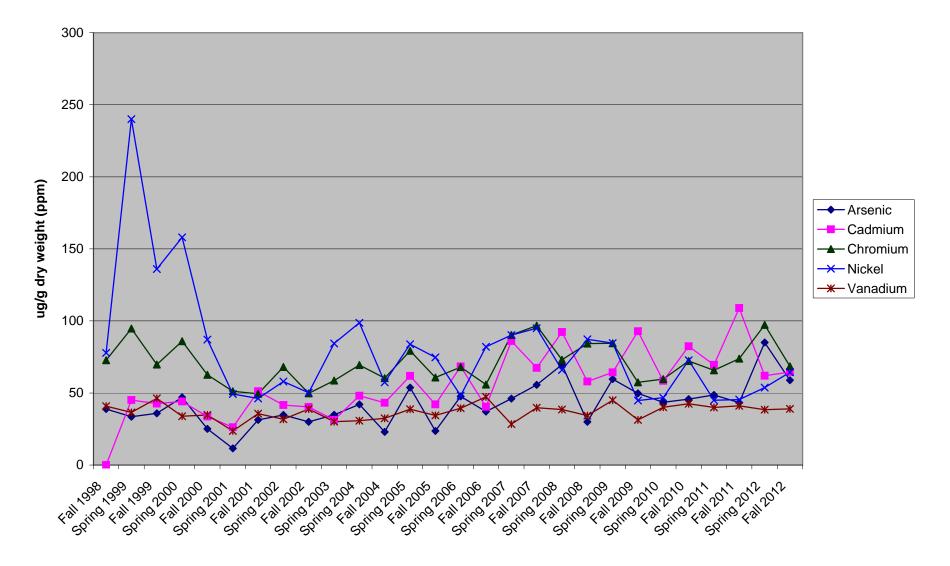
-

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se	V Vanadium	Zn Zinc
08/09/07	0708082-001A	48.0	<1.2	48.0	65.0	2700	4.30	70.0	1.80	49.0	4000
08/10/07	0708082-002A	47.0	<1.2	36.0	330	990	2.90	290	2.60	49.0	4000
08/14/07	0708121-001A	44.0	<1.2	55.0	52.0	1100	5.20	110	2.00	37.0	
08/14/07	0708121-002A	45.0	<1.2	57.0	69.0	1400	6.40	51.0	2.70	46.0	4700
08/15/07	0708121-003A	39.0	<1.2	40,0	190	2500	2.90	160	2.20	42.0	5200
08/15/07	0708121-004A	65.0	<1.3	110	49.0	180	8.20	37	2.30	33.0	4100
08/16/07	0708121-005A	60.0	<6.5	70.0	57.0	980	7.20	120	<6.5		7300
08/16/07	0708121-006A	86.0	<1.4	120	49.0	3400	12.00	36.0	2.70	<32	5300
08/17/07	0708121-007A	48.0	<1.3	59.0	53.0	1300	5.80	40.0	2.30	31.0	8800
08/17/07	0708121-008A	74.0	<1.5	79.0	53.0	1400	7.40	35.0		41.0	5900
						1400	<u> </u>	30.0	2.20	29.0	6600
VERAGE		55.6	NA	67.4	96.7	1595	6.2	94.9	2.2	00 7	
TANDARD DEV		14.4	NA	26.8	87.7	919	2.6		2.3	39.7	5590
OEFFICIENT O	F VARIATION	26.0%	NA	39.7%	90.7%	57.6%	41.4%	76.9	0.3	7.2	1505
					00.1.70	01.070	41,470	81.0%	12.6%	18.1%	26.9%

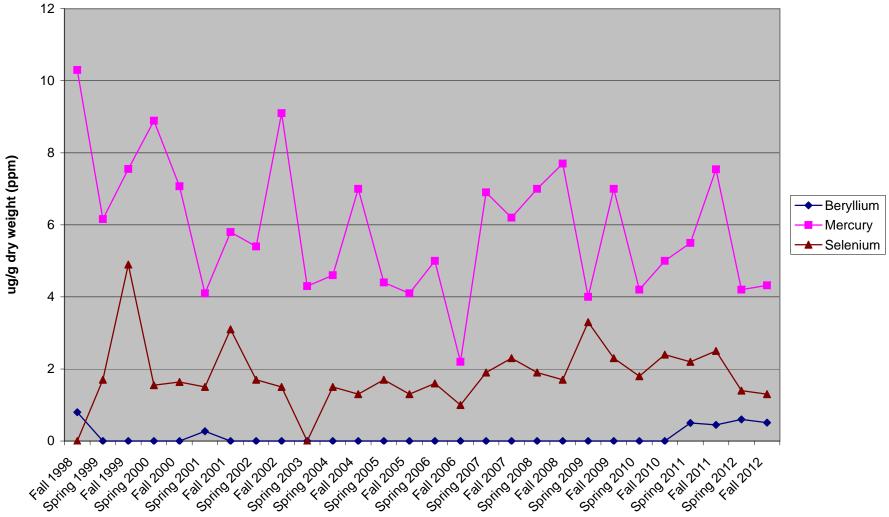
SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selepium	V Vanadium	Zn Zinc
04/25/08	0805009-001A	73.0	<1.3	170.0	60.0	2300	13.00	34.0	1.50	35.0	9900
04/28/08	0805009-002A	91.0	<1.2	100.0	50.0	1600	6.50	62.0	1,80	26.0	7200
04/29/08	0805009-003A	54.0	<1.2	47.0	72.0	1100	3.00	200.0	<1.2	44.0	4700
04/29/08	0805009-004A	98.0	<1.4	120	85.0	2300	9.80	78.0	1.90	38.0	8100
04/30/08	0805021-001A	48.0	<1.3	61	88.0	1300	3.70	83.0	<1.3	49.0	4900
04/30/09	0805021-002A	80.0	<1.3	110.0	110.0	1500	12.00	36.0	2.00	32.0	7800
05/01/08	0805021-003A	47.0	<1.2	52	69.0	990	3.10	41.0	<1.2	44.0	4800
05/01/08	0805021-004A	95.0	<1.3	130.0	58.0	2000	9.40	33	2.60	25.0	10000
05/02/08	0805021-005A	38.0	<1.2	45.0	72	840	3.50	47	<1.2	39.0	6600
05/02/08	0805021-006A	72.0	<1.3	88.0	67	1500	6.20	46	1.70	53.0	8300
											0000
AVERAGE		69.6	NA	92.3	73.1	1543	7.0	66.0	1.9	38.5	7230
STANDARD DEV	IATION	20.6	NA	39.4	16.5	492	3.6	47.8	0.3	8.8	1875
COEFFICIENT O	F VARIATION	29.6%	NA	42.7%	22.5%	31.9%	51.3%	72.4%	17.9%	22.9%	25.9%

Analyses performed by Life Science Laboratories, Inc

SAMPLE COLLECTION DATE	LAB #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Selenium	V Vanadium	Zn
12/19/08	0812217-001A	33.0	<1.4	68.0	91.0	1400	11.00	59.0	1.50	28.0	<u>Zinc</u> 5900
12/19/08	0812217-002A	26.0	<1.3	64.0	70	1900	7.80	77	1.50	23.0	
12/20/08	0812217-003A	35.0	<1.4	80.0	39.0	1100	8.30	72	2.10	23.0	4800
12/22/08	0812217-004A	31.0	<1.2	29.0	76.0	670	5.90	48.0	<1.2	<u></u> 61.0	6600
12/23/08	0812217-005A	<27	<27	60.0	190	1000	14.00	190	<27	57.0	2900
12/23/08	0812217-006A	27.0	<1.3	34	56.0	1100	4.10	45	<1.3		4100
12/24/08	0812217-007A	24.0	<1.3	43.0	150.0	680	6.50	260		32,0	3000
12/29/08	0901008-001A	51.0	<1.3	89	58.0	3600	7.50	38.0	1.60	46.0	4000
12/30/08	0901008-002A	24.0	<1.3	65.0	55.0	1600	7.50		1.70	24.0	6400
12/30/08	0901008-003A	19.0	<1.3	48.0	58.0	1200		33.0	1.50	18.0	4900
					00.0	1200	4.80	<u>51.0</u>	<1.3	30.0	3700
AVERAGE		30.0	NA	58.0	84.3	1425	77	07.0		·	·
STANDARD DEVIATION		8.8	NA	18.4	45.7		7.7	87.3	1.7	34.3	4630
COEFFICIENT OF	VARIATION	29.3%	NA	31.7%		810	2.8	71.8	0.2	14.3	1262
		ا المنافقة المنافعة ا		01.1.70	54.2%	56.8%	35.9%	82.2%	13.0%	41.6%	27.3%


Sample Collection Date	Lab #	As Arsenic	Be Beryilium	Cd Cadmium	Cr	Pb	Hg	Ni	Se	v	. Zn
E 14 4 100000				Caumum	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
5/11/2009	0905077-001A	46	<1.2	39	82	1200	3.1	60	1.3	49	4500
5/11/2009	0905077-002A	63	<1.3	78	94	1300	3.8	46	5	42	5900
5/12/2009	0905077-003A	80	<1.2	88	73	1500	4.3	34	6.3	45	6800
5/12/2009	0905077-004A	100	<1.2	100	76	4600	6.9	120	6.6	33	8600
5/13/2009	0905106-001A	62	<1.2	68	76	1400	4.5	79	3	46	5800
5/13/2009	0905106-002A	49	<1.2	41	170	1200	2.4	210	1.4	68	5100
5/14/2009	0905106-003A	59	<1.3	74	66	1900	5,7	71	2.6		
5/14/2009	0905106-004A	48	<1.2	50	65	1200	·			38	10000
5/15/2009	0905106-005A	46	<1.2				3.3	67	2.1	42	5200
5/15/2009	905106-006A	43	<1.2	63 42	71	2100	4	64	1.5	39	5200
		L 45	1.2	42	72	930	2.2	95	<1.2	48	5100
Average			r <u></u>	r							
Average		59.6	NA	64.3	84.5	1733.0	4.0	84.6	3.3	45.0	6220.0
Standard Devia		18.1	NA	21.1	31.2	1066.3	1.4	50.2	2.1	9.4	1767.5
Coefficient of v	ariation	30.4%	NA	32.9%	36.9%	61.5%	35.9%	59.4%	63.8%	21.0%	28.4%
Sample	I	r	·								
Collection	Lab	4.0	.	a 1							
Date	#	As Arsenic	Be Beryllium	Cd	Сг	Pb	Hg	Ni	Se	V	Zn
10/16/2009	// 0910091-001A	36	<1.2	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
10/19/2009	0910091-002A	67	<1.2	55 110	72 51	770	3.9	59	2.5	32	32,000
10/20/2009	0910091-003A	44	<1.3	64		2000	7.6	31	1.5	36	8400
10/20/2009	0910091-004A	66	<1.3	120	47 55	890	5.2	37	<1.3	29	5200
10/21/2009	0910113-001A	55	<1.2	89	55	1700	9.9	60	1.6	28	8000
10/21/2009	0910113-002A	60	<1.3	120	48	1500	3.2	38	1.3	43	6800
10/22/2009	0910113-003A	36	<1.2	54	48 46	1500	3.8	31	1.6	33	8200
10/22/2009	0910113-004A	37	<1.2	78		850	9.8	30	<1.2	38	4900
10/23/2009	0910113-005A	42	<1.3	98	95	1100	4.6	67	3	31	6200
10/23/2009	0910113-006A	54	<1.3	140	55 48	1300	11	51	3.3	23	7600
				V	40	1900	11	44	3.7	20	10000
Average		49.7	NA	92,8	57.4	1054					
Standard De		12.2	NA	29.9	<u> </u>	1351	7	44.8	2.3	31.3	9730
Coefficient of	variation	24.6%	NA	32.2%	26.6%	441.6 32.7%	3.2	13.6	0.9	6.8	7976.1
					20.070	32.170	<u>45.6</u> %	30.4%	40.4%	21.8%	82.0%

Collection Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
5/24/2010	1006054-001A	55	<1.2	77	68	1300	4.1	58	2.3	47	6500
5/25/2010	1006054-002A	40	<1.2	52	57	780	2.9	52	1.3	41	4500
5/25/2010	1006054-003A	52	<1.2	87	57	1300	5	37	2	26	7600
5/26/2010	1006054-004A	28	· <1.1	41	40	940	2.8	29	<1.1	32	3900
5/26/2010	1006054-006A	37	<1.3	62	58	1900	4.2	54	<1.3	44	5400
5/27/2010	1006054-007A	32	<1.2	46	46	610	5.3	66	<1.2	31	3500
5/27/2010	1006054-008A	43	<1.3	71	66	1400	7.3	48	1.6	35	
5/28/2010	1006054-009A	38	<1.2	39	69	680	4.3	33	<1.2		5200
5/28/2010	1006054-010A	46	<1.2	55	69	890	4	57	<1.2	65 40	4000
5/29/2010	1006054-011A	64	<1.2	54	66	960	2.2	33	<1.2	40	5300
									<1.Z	40	4900
Average		43.5	NA	58.4	59.6	1076.0	4.2	46.7	1.0	40.4	
Standard Devia	ation	11.0	NA	15.8	10.1	396.2			1.8	40.1	5080.0
Coefficient of v	ariation	25.3%	NA	27.0%	16.9%	36.8%	1.5 34.7%	12.8 27.4%	0.4 24.4%	10.8 27.0%	1245.3
Sample Collection	Lab										
Date		As	Be	Cd	Cr	Pb	Но	Ni	S.0.	V	
	#	As Arsenic	Be Beryllium			Pb Lead	Hg Mercury	Ni Nickel	Se	V	Zn
9/27/2010	# 1010020-001A			Cd Cadmium 82	Cr Chromium 83	Pb Lead 1200	Hg Mercury 5.7	Nickel	Selenium	Vanadium	Zinc
9/27/2010 9/28/2010		Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel 200	Selenium 4.9	Vanadium 33	Zinc 6,400
the second s	1010020-001A	Arsenic 79	Beryllium <1.2	Cadmium 82	Chromium 83	Lead 1200	Mercury 5.7	Nickel	Selenium 4.9 2.2	Vanadium 33 50	Zinc 6,400 5200
9/28/2010	1010020-001A 1010020-002A	Arsenic 79 38	Beryllium <1.2 <1.2	Cadmium 82 93	Chromium 83 100	Lead 1200 830	Mercury 5.7 3.3	Nickel 200 46	Selenium 4.9 2.2 1.5	Vanadium 33 50 29	Zinc 6,400 5200 6000
9/28/2010 9/28/2010 9/29/2010 9/29/2010	1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A	Arsenic 79 38 35	Beryllium <1.2 <1.2 <1.3	Cadmium 82 93 95	Chromium 83 100 45	Lead 1200 830 1200	Mercury 5.7 3.3 9	Nickel 200 46 36	Selenium 4.9 2.2 1.5 1.6	Vanadium 33 50 29 39	Zinc 6,400 5200 6000 5800
9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010	1010020-001A 1010020-002A 1010020-003A 1010020-004A	Arsenic 79 38 35 37	Beryllium <1.2 <1.2 <1.3 <1.2	Cadmium 82 93 95 67	Chromium 83 100 45 64	Lead 1200 830 1200 1000	Mercury 5.7 3.3 9 5	Nickel 200 46 36 91 38	Selenium 4.9 2.2 1.5 1.6 2.2	Vanadium 33 50 29 39 40	Zinc 6,400 5200 6000 5800 6500
9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010	1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A	Arsenic 79 38 35 37 58	Beryllium <1.2 <1.2 <1.3 <1.2 <1.2 <1.2	Cadmium 82 93 95 67 84	Chromium 83 100 45 64 56	Lead 1200 830 1200 1000 1200	Mercury 5.7 3.3 9 5 8	Nickel 200 46 36 91	Selenium 4.9 2.2 1.5 1.6	Vanadium 33 50 29 39 40 32	Zinc 6,400 5200 6000 5800 6500 6600
9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010	1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A 1010020-009A	Arsenic 79 38 35 37 58 49 61 30	Beryllium <1.2 <1.2 <1.3 <1.2 <1.2 <1.2 <1.2	Cadmium 82 93 95 67 84 93	Chromium 83 100 45 64 56 70	Lead 1200 830 1200 1000 1200 1600	Mercury 5.7 3.3 9 5 8 4.9	Nickel 200 46 36 91 38 63	Selenium 4.9 2.2 1.5 1.6 2.2 2.9	Vanadium 33 50 29 39 40	Zinc 6,400 5200 6000 5800 6500 6600 9000
9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010 10/1/2010	1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A 1010020-009A 1010020-010A	Arsenic 79 38 35 37 58 49 61 30 35	Beryllium <1.2 <1.2 <1.3 <1.2 <1.2 <1.2 <1.2 <1.4 <1.3 <1.3	Cadmium 82 93 95 67 84 93 140	Chromium 83 100 45 64 56 70 51	Lead 1200 830 1200 1000 1200 1600 1800	Mercury 5.7 3.3 9 5 8 4.9 3.3	Nickel 200 46 36 91 38 63 54	Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3	Vanadium 33 50 29 39 40 32 29	Zinc 6,400 5200 6000 5800 6500 6600 9000 4400
9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010	1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A 1010020-009A	Arsenic 79 38 35 37 58 49 61 30	Beryllium <1.2 <1.2 <1.3 <1.2 <1.2 <1.2 <1.2 <1.2 <1.4 <1.3	Cadmium 82 93 95 67 84 93 140 48	Chromium 83 100 45 64 56 70 51 98	Lead 1200 830 1200 1000 1200 1600 1800 1099	Mercury 5.7 3.3 9 5 8 4.9 3.3 3.5	Nickel 200 46 36 91 38 63 54 85	Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3 1.5	Vanadium 33 50 29 39 40 32 29 70	Zinc 6,400 5200 6000 5800 6500 6600 9000
9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010 10/1/2010	1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A 1010020-009A 1010020-010A	Arsenic 79 38 35 37 58 49 61 30 35 35 35	Beryllium <1.2 <1.2 <1.3 <1.2 <1.2 <1.2 <1.2 <1.4 <1.3 <1.3 <1.3	Cadmium 82 93 95 67 84 93 140 48 49 73	Chromium 83 100 45 64 56 70 51 98 75 80	Lead 1200 830 1200 1000 1200 1600 1800 1099 1100 1500	Mercury 5.7 3.3 9 5 8 4.9 3.3 3.5 2.1 5.2	Nickel 200 46 36 91 38 63 54 85 72 42	Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3 1.5 1.8	Vanadium 33 50 29 39 40 32 29 70 60	Zinc 6,400 5200 6000 5800 6500 6600 9000 4400 4800
9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010 10/1/2010 10/2/2010 Average	1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-008A 1010020-009A 1010020-010A 1010020-011A	Arsenic 79 38 35 37 58 49 61 30 35 35 35 45.7	Beryllium <1.2 <1.2 <1.3 <1.2 <1.2 <1.2 <1.2 <1.4 <1.3 <1.3 <1.3 <1.3	Cadmium 82 93 95 67 84 93 140 48 49 73 82.4	Chromium 83 100 45 64 56 70 51 98 75 80 72.2	Lead 1200 830 1200 1000 1200 1600 1800 1099 1100 1500 1252.9	Mercury 5.7 3.3 9 5 8 4.9 3.3 3.5 2.1 5.2 5	Nickel 200 46 36 91 38 63 54 85 72 42 72.7	Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3 1.5 1.8	Vanadium 33 50 29 39 40 32 29 70 60	Zinc 6,400 5200 6000 5800 6500 6600 9000 4400 4800
9/28/2010 9/28/2010 9/29/2010 9/29/2010 9/30/2010 9/30/2010 10/1/2010 10/1/2010	1010020-001A 1010020-002A 1010020-003A 1010020-004A 1010020-006A 1010020-007A 1010020-009A 1010020-009A 1010020-010A 1010020-011A	Arsenic 79 38 35 37 58 49 61 30 35 35 35	Beryllium <1.2 <1.2 <1.3 <1.2 <1.2 <1.2 <1.2 <1.4 <1.3 <1.3 <1.3	Cadmium 82 93 95 67 84 93 140 48 49 73	Chromium 83 100 45 64 56 70 51 98 75 80	Lead 1200 830 1200 1000 1200 1600 1800 1099 1100 1500	Mercury 5.7 3.3 9 5 8 4.9 3.3 3.5 2.1 5.2	Nickel 200 46 36 91 38 63 54 85 72 42	Selenium 4.9 2.2 1.5 1.6 2.2 2.9 3 1.5 1.8 2.2	Vanadium 33 50 29 39 40 32 29 70 60 43	Zinc 6,400 5200 6000 5800 6500 6600 9000 4400 4800 5500


Sample Collection Date	Lab #	As Arsenic	Be Beryllium	Cd Cadmium	Cr Chromium	Pb Lead	Hg Mercury	Ni Nickel	Se Selenium	V Vanadium	Zn Zinc
6/7/2011	K1106170-001A	62	0.46	68	69	1800	3.7	35	2.2	43	5800
6/7/2011	K1106170-002A	61	0.44	100	66	1300	7.3	30	2.2	35	7000
6/8/2011	K1106170-003A	54	0.48	63	66	1000	3	77	2	38	5800
6/8/2011	K1106170-004A	65	0.41	100	74	2100	8.7	43	1.9	37	6900
6/9/2011	K1106170-006A	46	0.4	72	59	1200	4.3	59	1.9	34	6200
6/9/2011	K1106170-007A	51	0.43	75	57	860	4.9	. 39	2.8	37	6300
6/10/2011	K1106170-008A	27	0.71	38	70	610	7.9	40	3.8	40	4000
6/10/2011	K1106170-009A	44	0.54	67	67	1300	4.2	51	2.4	44	5500
6/11/2011	K1106170-010A	34	0.59	46	67	1000	6	46	1.8	55	6200
6/11/2011	K1106170-011A	42	0.46	66	62	1100	5.1	30	1.4	37	6100
<u></u>			b								0100
Average		48.6	0.5	69.5	65.7	1227.0	5.5	45.0	2.2	40.0	5980.0
Standard Devia	ation	12.4	0.1	19.7	5.1	439.2	1.9	14.4	0.7	6.2	837.7
Coefficient of v	ariation	25.6%	19.6%	28.4%	7.8%	35.8%	34.6%	32.0%	29.6%	15.4%	14.0%
Sample Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
10/18/2011	K1110337-001A	45	0.36	84	58	1200	5.2	44	1.8	42	8,600
10/18/2011	K1110337-002A	46	0.46	330	130	2200	6.3	39	1.8	48	6100
10/19/2011	K1110337-003A	40	0.5	59	74	1100	3	63	1.8	42	5000
10/19/2011	K1110337-004A	48	0.55	77	82	1200	5.8	50	2.7	48	6700
10/20/2011	K1110337-006A	53	0.47	120	80	1600	17	58	2.5	38	9400
10/20/2011	K1110337-007A	37	0.41	91	68	1300	14	43	2	41	6700
10/21/2011	K1110337-008A	31	0.36	69	57	990	6	32	4.5	31	7000
10/21/2011	K1110337-009A	47	0.56	120	65	2000	9.5	35	3.6	41	7800
10/26/2011 10/26/2011	K1110337-010A	31	0.63	43	71	830	3.9	55	1.5	40	4900
10/20/2011	K1110337-011A	55	0.34	96	53	1200	4.7	35	2.3	40	6900
Average	T	43.3	0.45	108.9	73.8	1362	764	15 4			
Standard De	viation	8.4	0.45	81.4	22.0	439.5	7.54 4.6	45.4	2.5	41.1	6910
Coefficient o		19.3%	21.7%	74.8%	22.0	439.5 32.3%	4.6	10.7 23.5%	0.9 38.4%	<u>4.8</u> 11.8%	1425.5
		0.070	£ 1.1 /0	17.070	20.0/0	JZ. J70	UU 070	Z.1.2.%	38/1%	11896	20.6%

Sample	1	1					Ι	l			
Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	v	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
6/12/2012	K1206354-011A	120.0	0.6	67.0	110.0	770.0	3.8	93.0	1.6	37.0	4900
6/12/2012	K1206354-012A	90.0	0.5	64.0	78.0	790.0	6.4	35.0	0.8	40.0	4400
6/13/2012	K1206354-013A	110.0	0.6	80.0	100.0	1500.0	4.6	46.0	1.2	35.0	5200
6/13/2012	K1206354-014A	76.0	0.6	57.0	84.0	530.0	3.1	53.0	1.1	36.0	4300
6/20/2012	K1206354-015A	56.0	1.4	39.0	57.0	1100.0	0.5	49.0	1.0	35.0	3700
6/14/2012	K1206354-016A	71.0	0.5	79.0	71.0	1600.0	6.3	31.0	2.1	34.0	4800
6/15/2012	K1206354-017A	56.0	0.7	32.0	94.0	2400.0	3.1	64.0	1.1	55.0	4100
6/15/2012	K1206354-018A	87.0	0.5	73.0	75.0	530.0	6.4	35.0	2.1	42.0	6200
6/19/2012	K1206354-019A	98.0	0.5	72.0	74.0	1700.0	4.2	33.0	1.8	37.0	6300
6/19/2012	K1206354-020A	87.0	0.5	57.0	230.0	1600.0	3.3	98.0	1.3	33.0	9400
Average		85.1	0.6	62.0	97.3	1252.0	4.2	53.7	1.4	38.4	5330.0
Standard Dev	viation	21.1	0.3	16.1	49.1	608.6	1.9	24.4	0.5	6.4	1661.4
Coefficient of	variation	24.8%	43.1%	26.0%	50.5%	48.6%	44.9%	45.4%	35.6%	16.8%	31.2%
Sample											
Collection	Lab	As	Be	Cd	Cr	Pb	Hg	Ni	Se	V	Zn
Date	#	Arsenic	Beryllium	Cadmium	Chromium	Lead	Mercury	Nickel	Selenium	Vanadium	Zinc
9/25/2012	k1210235-011A	87	0.5	64	66	1300	3.2	60	0.85	37	6600
9/26/2012	K1210235-012A	40	0.48	38	63	650	2.5	49	3.6	33	3800
9/27/2012	K1210235-013A	48	0.5	42	57	590	2	84	0.62	47	4200
10/2/2012	K1210235-014A	55	0.53	79	71	2100	5.6	39	0.68	41	6800
10/2/2012	K1210235-015A K1210235-016A	55 59	0.46	73 83	66 65	880 1600	3.7 5.9	40	1.9 1.5	31 36	8600
10/3/2012	K1210235-018A	59 60	0.63	78	05 91	1300		100	0.8		6500 6300
10/5/2012	K1210235-017A	54	0.03	60	66	1300	4.0	120	0.75	38	21000
10/5/2012	K1210235-010A	88	0.53	84	72	1400	8.7	71	1.6	- 30 - 46	7100
10/6/2012	K1210235-019A	43	0.53	44	68	600	5.2	43	0.64	39	4100
101012012	111210200-020A		0.17	77		000	0.2	-10	V.V1		0017
Average		58.9	0.511	64.5	68.5	1172	4.32	64.4	1.294	39	7500
Standard D	Deviation	16.4	0.1	17.8	8.9	490.9	2.1	28.7	0.9	5.2	4983.3
Coefficient	of variation	27.8%	10.2%	27.5%	13.0%	41.9%	49.3%	44.6%	72.0%	13.2%	66.4%

VII.A. Mean Values Ash Data Dry Weight

VII.B. Mean Values Ash Data Dry Weight

VII.C. Mean Values Ash Data Dry Weight

	As	Cd	Cr	Hg	Ni	Pb	Se	Zn
Site	Arsenic	Cadmium	Chromium	Mercury	Nickel	Lead	Selenium	Zinc
Hempstead	17.2	29.5	72.1	15.9	14100	1270	0.82	2440
Hempstead	17.4	29.1	43	16.9	84	1480	1.7	3020
Hempstead	15.9	31.9	48.3	16.8	49	1620	1	2440
Oneida Co.	13.6	16.4	132	0.13	193	369	<1.2	1350
Oneida Co.	<6.4	15.6	96.5	<0.13	159	571	<1.3	1270
Oneida Co	7.7	17.7	111	0.22	211	1110	<1.3	1610
Westchester	12.6	31.8	49.9	1.9	54	3180	<1.2	2410
Westchester	18.4	32.3	77.7	1.7	49	2570	<1.3	2520
Westchester	13.3	29.1	56.6	2	47	2030	<1.2	2250
Dutchess Co.	15.7	42.9	42.5	13.4	55	1400	1.6	3530
Dutchess Co.	12.6	43.3	37,1	12.2	98	1280	1.4	3080
Dutchess Co.	14.3	39.6	30.2	31	84	1180	1.8	2820
Babylon	14.5	35.0	47	9.8	88	997	1.4	3360
Babylon	17.7	37.4	67.5	9.3	291	1080	1.2	3760
Babylon	14.6	31.5	66.6	9.8	117	844	1.4	3580
Islip	15.3	32.2	52	13	111	1480	<1.2	4870
Islip	20.4	39.5	62.8	21.5	338	1710	<1.2	12900
Islip	12.6	32.6	57.8	20.6	206	1670	<1.2	8690
Dutchess Co.	30.0	42.1	89.6	24.3	80	1510	<7.10	3940
Dutchess Co.	28.2	36.6	30.6	23.2	42	1370	<7.1	3530
Dutchess Co.	34.3	41.2	35.3	24	71	1820	<7.2	3810
Babylon	34.6	82.6	6530	6.5	3880	2960	<12.3	6940
Babylon	39.1	90.9	69.7	11.4	160	4680	<6.1	13800
Babylon	31.5	72.8	87.8	11.9	250	3490	<12.1	6960
Westchester	14.9	27.3	24.3	0.75	28.5	1040	<5.7	2240
Westchester	14.0	23.4	38.3	0.79	33.6	1050	<5.8	1960
Westchester	16,2	17.3	20.8	0.87	19.8	828	<5.8	1690
Hempstead	22.6	17.5	19	17.6	20.5	481	1.2	1120
Hempstead	32.6	30.7	202	17.4	166	686	<5.8	1850
Hempstead	23.5	32.7	24.9	13	28.4	898	12.3	2630
Oneida Co.	9.7	7.7	49	0.65	141	987	4.2	1450
Oneida Co.	13.0	9.1	68.2	0.62	156	2720	4.6	1510
Oneida Co.	31.6	9.5	111	0.95	314	1060	<9.9	1640
				0.00		1000	-9.9	1040
Average	19.1	33.6	259	10.9	658	1558	2.66	3666
Standard Deviation	8.3	18.3	1109	8.7	2463	934	3.00	2988
Coefficient. of Variation	43%	55%	428%	80%	374%	<u> </u>	113%	_ <u>2988</u> 81%

New York State DEC Ash Residue Characterization Project March 1992 Summary of "Combined" (Fly and Bottom) Ash Results All Results in ug/g (ppm)